10.2 Electron beam
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This simulation was made as a solution to one of the International
Young Physicist Tournament. Here is a sample problem: An electron
beam is cast upon a planparallel of known homogenebus material.
Some of the electrons penetrate it, some do not. Iry to simulate
the processes taking place, e.g. using the Monte Carlo method, and
compare your results with those published in the literature.

10.2.1 Introduction

Modeling by the Monte Carlo Method is to simulate with the use of
the theory of probability and laws of statistics. This method can be
used for solving tasks in which a direct algoritm can not be found, or
the algoritm is too complicated to be used in practical solutions. The
phenomena that occur during the penetration of electrons in solids
are known and described. However when we combine these processes
there are some influencing parameters which make the direct approach
impossible. In the Monte Carlo Method we use models of simple
processes in which we include a certain random factor. When we
combine these processes we obtain the complex process which includes
the influencing factors. If we make a great numer of these simulations
we will get certain output values or their distribution. The more
simulation runs we make the more accurate our result will be.

In our simulation we will always trace one (primary) electron, it is to
be the so-called single particle model. When we want to simulate the
trajectory of the primary electron we have to follow a couple basic
steps. The firt thing is to find out the free path which the electron
traveled between two consecutive colisions and the final position of
the electron. The next step is to determine what kind of collision
is taking place, the angle at which the electron was scattered, and
the energy loss of the electron. We repeat this algoritm until the
energy of the primary electron is lowered to the level on which the
electron can be considered absorbed, or until the electron leaves the
target. In order to simulate these processes we need to know the
total cross-sections, mean free paths of each single process, and the
differential cross-sections of the processes; for which we need to know
their dependencies on the scattering angle or on the energy loss of the
primary electron.

Because the description of the task is too general we have to simplifiing
‘thing a bit. We have decided to simulate electrons that have energy in
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the range of hundreds of eV to hundreds of keV. We also suppose that
the target is homogeneous and composed of atoms of only one element. -
We also had to neglect emisions of the secondary electrons,and effects
of diffraction. The main objective of our work was to make a simulator
that will not be too demanding on the input parameters, but will be
able to produce some relatively good results.

10.2.2 Elastic scattering

As we stated earlier an electron is scattered on its way through the
target on the atoms of the solid. The collisions that occur can be
divided into two groups-elastic and inelastic, by the amount of energy
that the electron loses during the collision.

If the electron scatters on the nucleus of the atom we can consider
the scattering to be elastic. This also is a certain simplification. We
know that in reality there is always some energy loss. However the
energy loss is very minimal (about 107 eV), so we can neglect it and
consider the scattering to be elastic.

Because the electron scattering on the nucleus is very localized, this
means that the adjacent atoms have no influence on the collision, it’s
possible to use the model of elastic collision on a single atom as a
model of elastic scattering. There are three main models used for
simulating the elastic collision on a single atom:

a) Tabulated cross-sections.

b) Rutherford’s model.

¢c) Mott’s modiffication of Rutherford’s model, which includes the
influence of the electron’s spin.

The first method gives good results, but it has some disadvantages.
There is a need for numerical integration during calculating when we
use this method, this would slow down the whole simulation remark-
ably. Also the data are not available for all elements in all energy
ranges. Because of this, we have decided to apply the second method.
This method is much easier and it also gives quite good results. The
detailed comparison of different ways of modeling elastic scattering
can be found in the literature[l]. '

We will show the formulas for a total cross-section o and differen-
tial cross-section % for Rutherford’s model(Q is a solid angle). This
model includes the influence of the electron cloud on the value of

74



electric potential V. This potential is then by Wentzel{8]:
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e is an electron charge,e, dielectric constant ,and r the distance from
the center of the atom. And the radius of atom R is:

R = CIHZ_i,

ay is the Bohr’s radius of the atom(ay = 0.0569nm). Differential
cross-section 92 is then by [4] expressed as:

d o} [(Esin§)? + zr)?

where )\, is the wave-length of the electron, E is the energy of the
electron, E, is a rest energy of the electron: E, = m,c* = 511keV.

The expression (38) is valid for relativistic electrons. In that case we
use an expression for electron’s wave length

h (39)
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where m, is the rest mass of the electron. In the case of non-relativistic

electrons we can set (1+ E/E,)? =1and A, = 75-;’;:5 Because the
angle @ is quite small we can use an aproximation to simplify the prob-
lem.We set sin% == %. Using this we can simplify the expression(38)
nto do  4ZR* 1
. |
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the solid angle 2 can be expressed as df) = sin @ df d¢ where 6 is a
polar angle (0 < # < ) and ¢ is an azimuth angle (0 < ¢ < 27). The

value of %g- doesn’t depend on the value of the azimuth angle ¢.

We can get the total cross-section ¢ by integrating the expression(38)
over the full solid angle (2.
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From this we can derive a formula for probability density of electron
scattering with its dependence on the scattering angle 6:

dﬂ' -
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o [ %2in 6df (42)
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the probability p of electron being scattered into an angle « is then

P = ) 8)de. 4
After integration

~ (167*R? + A.%)(cos (o) — 1)
- 2(8m2R2%cos () — 8w2R?2 — \,%)

p (44)

By manipulating this expression we can easily get a formula for the

scattering angle a depending on a random number R, which ranges
from 0 to 1.

o . 16m*R%(R, — 1) + A*(2R,, — 1)
= E — 0311’1[———{6—;-2—&2(}2"_ IW ] (45)

Formulas (38) and(45) that we derived are dependent only upon the
parameters of the target and primary electrons. We can use these
formulas to obtain parameters of the electron’s trajectories inside the
solid. From the total cross-section we are able to get an expression

for mean free path (A) that the electron travels between two elastic
collisions. 4

~ Ny’
NV, 1s an Avogadro’s number and A is a relative atom number. The

mean free path is then measured in terms of mass thickness(kg/m?).

From now on we will measure all distances in terms of mass-thickness,
as it is usual in simulations like these.

A

(46)

When the elasting collision occurs we have to find the angle that
the electron was scattered into. We get this angle by substituting a
random number from the interval (0, 1) for R, in formula (45).

10.2.3 Inelasting scattering

The inelastic collision is, in comparison to the elastic one, less local-
ized. It means that the adjacent atoms influence the scattering. When
the primary electron scatters it looses some energy. In this case the
energy loss is not negligible. For simulating the inelastic scattering
Bethe’s model of continuous slowing down is very often used, as well
as a model of a single particle inelastic scattering.

Bethe’s model of continuous slowing down When we use the

Bethe’s model of continuous slowing down we consider only elasting
collisions. It means that the primary electron can change its direction
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only because of the elastic collisions, and the change of its energy
depends upon the length of its trajectory between collisions. The
amount of lost energy is given by a basic formula

AW = B Fdx, (47)
X1
where F is a force acting on the electron for which there 1s Bethe’s
fomula {4]
P e*NoZ Eaﬁz)
~ 4ne2AE,f? 2J

where 8 = v/c. In the case of nonrelativistic electrons we can make
a substitution E,B8%2 = 2E. It is necessary to mention the variable J
which is a mean ionisation potential. The mean ionisation potential
was derived by Caldwell[5] as a function of proton number Z

..é. — 12(1+05271) +0.03Z.

In { (48)

Or shortly J/Z = 13. As can be seen the expression(48) is not going
to work for low energies because of the logarytmic term(the energy
loss becomes negative). There must be some adjustments in order
to make a succesful simulation. We can either set the energy, at
which we consider the electron to be absorbed, to a value for which
the fomula (48) works, or we have to make some adjustments to the
mean ionisation potential. In the literature [11] we have found that
the meai ionisation potential can be adjusted like this:

Je

J = :
1+ &

(49)

J. is the original Caldwell’s mean ionisation potential and k is aprox-
imately 0.85. This way of simulating is quite simple, however it can

give some good results.

Model of single inelastic scattering There is a difference between
the previous model of inelasting scattering and this one. In this model
the primary electron scatters in two types of collisions-elastic and
nelastic ones. The electron doesn’t loose 1ts energy during travel, but
rather during the inelastic collisions that are simulated separately. In
these collisions the electron also changes the direction of its trajectory.
In order to create such a model of inelastic scattering we need to know
the mean free path A between two collisions.

Wau N 1 W mex
== [wm W f(W)dW, (50)

(K



where W, is a mean value of the lost energy during the inelastic colli-
sion. F' is a stopping force acting on the primary electron that slows
the electron down. f(W) is a probability density of electron loos-
ing the energy W,and W,,;, and W,,,, are boundary limits of the
electron’s energy loss. In this model we suppose that

dw  E,W?

The value of the energy loss W can then be expressed as:

dosin W... W,
W dW min mﬂ:’c_w_ 51
TW) = s da 37 = Wrnge — W 1)

Maximal energy loss W,,,; can be maximally equal to the momental
energy of the primary electron E. After subtitution:

FW) = (=)W, C

After substituting to the equation (50) and integration we get:

A = & EWmin In (- E ). (53)
FE - Wmin Wmin

Minimal energy loss W,,;, is a varying parameter that, when we con-
sider the properties of the function, must be greater than 0. In our
simulation it was sufficient to set W, = 10eV. From this equa-
tion we can finally count the electron’s mean free path between two
inelastic collisions A depending on the input parameters and the in-
stantaneous energy of the primary electron. Another thing we need
to know is the dependence of the value of the lost energy on a random

number. The probability p of the electron losing energy AW is

_ AV _ E(AW — Winin)
p(AW) - /Wrmn f(W)dW B AW(E_:_Wmm) | (54)
The energy loss AW is then dependent upon the random number R,:
EWmm

AW = (55)

R'qum T E(Rn :'—15
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The energy loss corresponds to a scattering angle 6: sin20 = o
During the simualtion the actual energy loss is obtained from equa.tlon( 53).
All shown calcuations for elastic and inelastic scattering are for the
scattering angle 8. The azimuth angle % is easily obtained from the
formula |

() = 2mR,,.
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10.2.4 Program details

Now we know the mean free paths for both types of collisions, from
them we can calculate the electron’s total mean free path A;:

1 __1 1
At Aelast )‘inet'

Other important formulas are those used for calculating the position
and speed of the primary electron. Let Zn,¥n, 2n be the electron’s
coordinates after the n-th collision and ©,, ¥, are the directional
and azimuth angle. Let ©,¥ are the angles we obtained from the
- previously shown formulas. For calculating the change of primary
electron’s direction after every collision (©,, ¥,) from the previous
direction we use formulas:

c0s©, = cosO,_1c0sO —sinO,_,sinOsin V3
sin U1 (cos ©,~1 5in © sin ¥ + cos O sin O,_1) + cos ¥,,_; sin O cos

cos¥, = .
" sin©,,
- cos U,,_;(cos ©,_; sin © sin ¥ + cos O sin ©,-1) — sin ¥,_, sin O cos
sin _ O Em s A
" $inOy,

From the new angles ©,, and ¥,, old coordinates Zy, ¥n, Zn and the
free path 65, we get new coordinates of the primary electron:

H-'En+1 = 1x,+ AS,sin©,cos¥,,
Yn+l = Yn+ ASnsinOpsin ¥y,
Zn.[.l -_ z"_ + ASH COS en.

The first step in our simulation is to find the free pathA; as shown
above. The next step is to get new coordinates of the primary electron.
If the electron is still inside the plate we have to find out, In the next

step, what kind of collision is taking place. If

1
R, < 2,
At

(can be written as:)

g
Rn S elast
Ot

+ is an elastic collision. In the other case it will be an inelastic
collision (in the single inelasting scattering model). In the case of the
inelastic scattering model we have to determine the amount of lost

?
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energy due to the collision. If the primary electron’s energy drops
below a certain low level the movement of the electron becomes very
localized, we can thus consider the primary electron being absorbed.
We set this minimal level E,,;, = 200eV. If we a used lower energy
level the simulation would slow down remarkably, and lowering the
minimal energy wouldn’t have much influence on the result. In both
types of collisions we have to determine the scattering and azimuth

angle.

10.2.5 Results

The first thing we focused our simulation on were coefficients of
backscattering for thin films. The results of this simulation are mainly
influenced by the model of elastic scattering, so these simulations
are good for testing the model of elasting scattering( in our case
it’s a Rutherford’s model). We simulated electrons with energy of
50keV going through a plate made of aluminium and carbon(pic. 1).
For comparison we have decided to show results from the work of V.

Stary(1}(obr. 2).

Although the description of the task is said to simulate the electron’s
penetration through a planparalle] plate, we decided to simulate the
next penetration through a semi-infinite solid. From these simulations
we are able to find the mean depth of penetration z in the material(Al,
Be, Cu). We carried out these simulations for both types of models
of inelasting scattering (Bethe’s model and single inelastic scattering
model). The obtained results can be seen in pictures 2a and 2b. For
comparison we show the results of experiments(pic. 2c) published
in[7]. As you can see from the pictures we obtained quite good re-
sults for berilium and aluminium. However the results for copper and
especially for gold are not that good.

The last thing we simulated were 10keV electrons going though a
planparallel plate made of copper. In this simulation we were look-
ing for the number of electrons that went through, backscattered or
were absorbed(pic. 3a). For comparison we show data from a similar
simulation published in[5}(pic 3b). Although our simulator doesn’t
work as well for copper as it does for the other elements we chose this
simulation mainly because we had data from literature to compare
our results with. '

The last picture(num. 4) shows the electron trajectories calculated
in a previous simulation. A beam of electrons at energy of 10 keV is
cast upon a planparallel copper plate (in the place where the arrow
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points), which 1s 250¢~%/cm? thick. It can easily be seen from the
picture how the electrons scatter in the material and how some of

them leave the plate.

We carried out simulations mainly for aluminium,berilium and cop-
per. We chose these because we were able to compare our result with
results published in literature. Although our simulator is very simple
and we made lot of simplifications, it gives some results that can be
compared with those published in literature.

fig. 1
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10.3 Description of pictures

1
pic.1 Coeficients of backscattering for thin films of C,Al. The results
are lineary approximated by thick lines. The thin lines show results

taken from literature.

2:
pic.2 Mean depth of penetration of the electron’s in Be,Cu,Au,Al
and their dependence on electron’s energy; a- with a use of model
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of continuous slowing down, b- single inelasting scattering model, c-
experimental results taken from literature.

3: |

pic.3 Number of 10keV electrons that we backscattered, absorbed or
went through a planparallel plate made of copper, a- results of our
simulation( using the continuous slowing down model) , b- results
taken from literature.

4:

pic.4 Trajectories of electron’s with the energy of 10keV going through
a copper plate of thickness 2509~%/cm?
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