

Ilya Martchenko University of Fribourg *and* Lund University

October 12, 2011

Introduction

- Competition in physics for secondary school students
- Teams work on problems, discuss results in "Physics Fights"
- "Reporter", "Opponent", "Reviewer"
- Performance graded by int'l jurors
- Annual since 1988, own IOC and EC, seated with Eur. Phys. Soc.
- Not only a contest: a global platform for physics promotion

Concept

- Students are involved into a "simulation of real research"
- Experiments, theoretical description
- Many months of work into a 12 min presentation

Problems at the IYPT

Experimental

- "No known answer", intentionally left open-ended
- Research-oriented, no examination
- 17 problems each year (425 problems since 1988)
- Known to participants a year ahead

2. Cutting the air (2012) When a piece of thread (e.g., nylon) is whirled around with a small mass attached to its free end, a distinct noise is emitted. Study the origin of this noise and the relevant parameters.

4. Fluid bridge (2012)

If a high voltage is applied to a fluid (e.g. deionized water) in two beakers, which are in contact, a fluid bridge may be formed. Investigate the phenomenon.

Problems at the IYPT

- "It is nonsense to search a solution if it does not exist"
- "No: it's nonsense to search it, when it already exists"
- No known path for what to do
- No textbook solutions
- Topic for an independent research project
- A special role for the supervising teacher

Exemplary problems for 2012

Magnetic Gaussian cannon

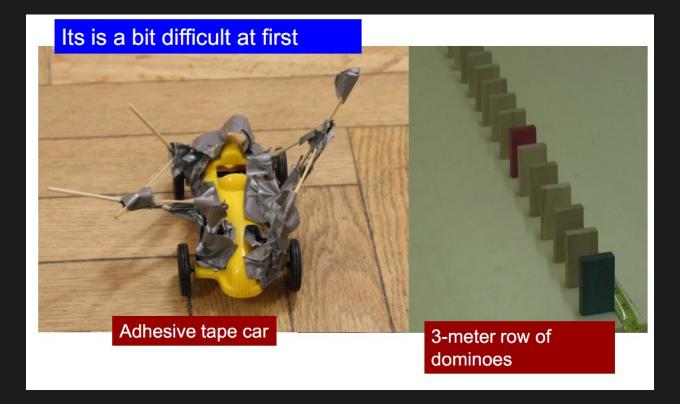
Quételet's rings on the glass

Fluid dynamics in a Hele-Shaw cell

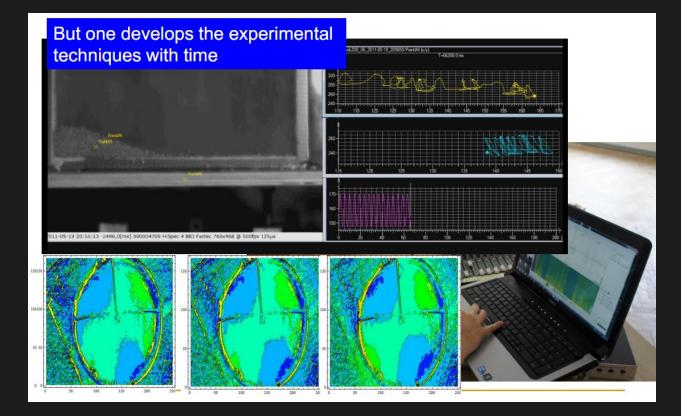
Capillary-driven Cheerios effect

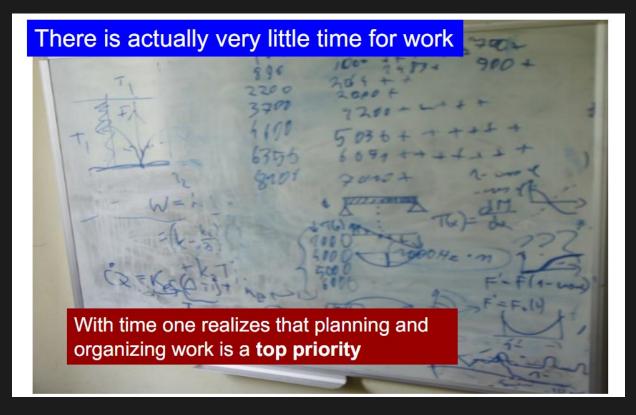

Ascent dynamics of Taylor bubbles

Dynamics of Newton's Beads



Formation of a granular jet

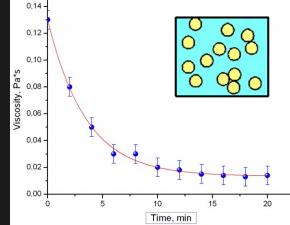

Interplay of impact and friction in a wooden toy


Feedback from Martin Malinowski (team member, IYPT 2011)

Feedback from Martin Malinowski (team member, IYPT 2011)

Feedback from Martin Malinowski (team member, IYPT 2011)

Good results via home made tools



Professional rheometer

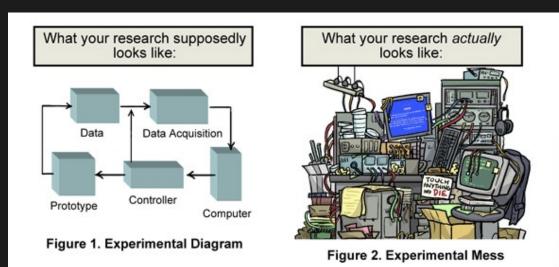
$$\frac{(I-I_0)U=k\omega^2}{k \propto \eta} \eta = \frac{\omega_w^2 \eta_w (I-I_0)}{\omega^2 (I_w - I_0)}$$

$$\eta = \eta_0 (1 + \frac{5}{2}\Omega)$$

- IYPT: minimalist home-made rheometer
 - **η** : sample viscosity
 - η_0 : water viscosity
- **Q** : volume fraction of particles

Relevant skills through practice

5700 ○ HS0
 ○ HS19 5000 5400 -5100 -4800 -4500 -4200 -3900 -3900 -3000 -2700 -2400 o HS40 4000 o HS69 $\Gamma_{\rm DOLS}\left({\rm s}^{\cdot 1}\right)$ 3000 2000 210 1000 0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 $q^{2} (nm^{2})$ mm


Plotting the data

Visualizing results

What skills are developed

- Solid knowledge in basic physics
- Collecting and analyzing experimental data
- Team work
- Making and defending a presentation
- Soft skills: holding a discussion, deadlines

WWW. PHDCOMICS. COM JORGE CHAM @ 2008

What skills are developed

Further aspects

- Tactical thinking
- Visiting other countries
- Getting to know people from all over the world
- Opportunity to talk to experts in science
- Being proud of representing one's country

→ IYPT experiences are very useful!

Georg Hofferek

Ways of doing research
General physics
knowledge

Computer programming

Finding literature
Manual skills

Presentation skills

English language

Electronics

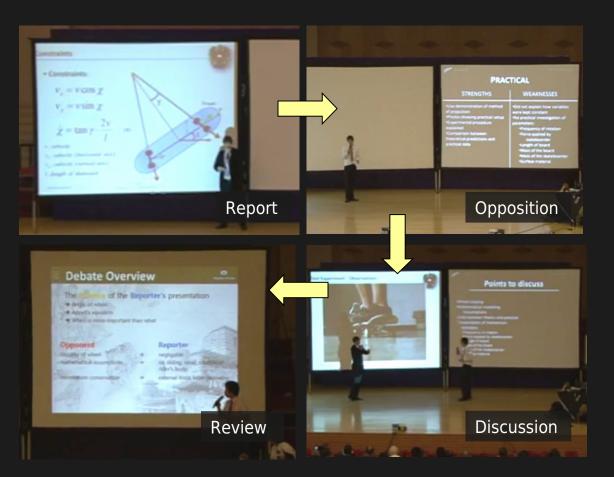
Maths

Patience

And a feeling of well-done job!

Maciej Malinowski

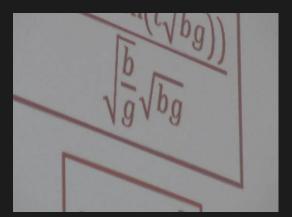
The Navier-Stokes equation
in cylindrical coordinates
$$\begin{cases} u \frac{\partial u}{\partial r} + w \frac{\partial u}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial r} + v \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} - \frac{u}{r^2} + \frac{\partial^2 u}{\partial z^2} \right) \\ u \frac{\partial w}{\partial r} + w \frac{\partial w}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial z} - g + v \left(\frac{\partial^2 w}{\partial r^2} + \frac{1}{r} \frac{\partial w}{\partial r} + \frac{\partial^2 w}{\partial z^2} \right) \\ h(r) \\ r \int_{0}^{h(r)} u(r, z) dz = q \quad \text{-integrated continuity equation} \quad u = v_r \\ w = v_z \end{cases}$$

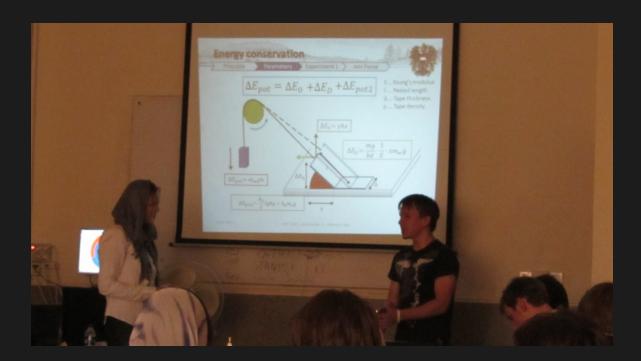

White Light and its Properties

- White light consist of three primary colours Red. Blue and Green.
- The seven principal colours that make up the visible spectrum are Red, Orange, Yellow, Green, Blue, Indigo and Violet.
- On one end of the scale Red light has the longest wavelength hence the lowest frequency and on the other end Violet has the shortest wavelength but the highest frequency.

"Physics Fight"

Three teams PF			
Stage	1	2	3
Team			
1	Rep	Rev	Орр
2	Орр	Rep	Rev
3	Rev	Орр	Rep



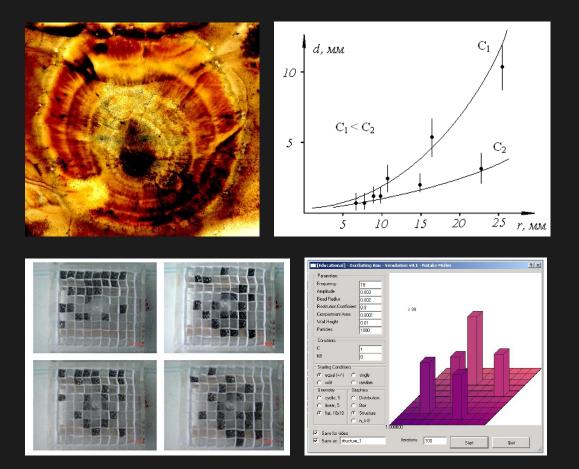

"Physics Fight"

Opponent

• Critical feedback to the presentation

Reviewer

- Evaluation of the discussion
- Not like a little Opponent but like a little jury
- Reviewer has no influence on challenge-rejectionprocedure so the review cannot be prepared in advance
- Georg Hofferek


IYPT problems as a source of ideas

- Gymnasiets projektarbete
- Science fairs, demonstrations
- Int'l Conf. Young Scientists, Jugend Forscht, ...

Gymnasiets projektarbete

I. M. No. 12 "Reaction" 14th IYPT (2001)

Natalie Müller No. 7 "Oscillating box" 16th IYPT (2003)

Official webpage

- Problems
- Regulations
- Official documents
- Contacts
- FAQ

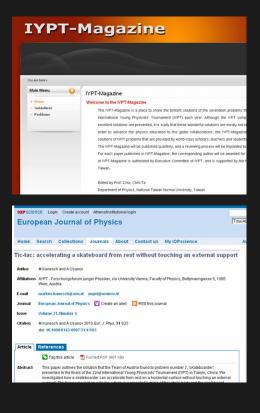
IYPT Archive

• A collection of historical problems

- Solutions, ideas, expertise
- 550+ exemplary presentations (slides and videos)
- Bibliography in physics education, research focused on the IYPT
- Good for future participants: culture of citations, critical learning, "what those people have done"
- When, what, who, where

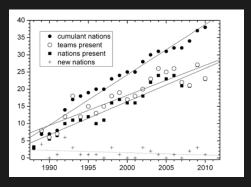
Reference kit

Preparation to the Young Physicists' Tournaments' 2007 * Ilya Martchenko, Poisk Centre


* revised, updated, and translated from the Russian

http://kit.ilyam.org

- Supporting reading material
- Bibliography on the phenomena related to the problems
- Practical tips and hints


Getting work published

- Peer review by the editorial board
- IYPT Magazine: submissions from any student
- Proceedings of the IYPTs
- Professional journals

Attracting new teams

- Lars Gislén: Sweden first participated at the 7th IYPT (1994)
- Inflow of new nations is small

 Please: spread a word if you know interested people in Denmark, Norway

A national network around the IYPT?

- ca. 6 Austrian + ca. 6 foreign teams
- all 17 IYPT problems
- English language
- regulations as at the IYPT
- a formal association
- fund raising is not easy, but well implemented

- ca. 15 Belarusian teams
- 12 out of 17 IYPT problems
- Russian/Belarusian language
- regulations as at the IYPT
- group of enthusiasts, patronage from Ministry of Education
- no centralized fund raising

- German YPT yet in plans
- special center oversees preparatory work
- enrolls teachers, advisors
- fund raising from companies, foundations
- patronage by German Phys. Soc.

 $\frac{dz}{dz} = -\frac{p^2}{p^2}$ $M = \frac{1}{2\pi} R'' p \left[\frac{2S}{2S} \frac{d}{dz} \frac{sisple coupl}{dz} \right]$ $M = \frac{1}{2\pi} R'' p \left[\frac{2S}{2S} \frac{d}{dz} \frac{sisple coupl}{dz} \right]$ $M = \frac{1}{2\pi} R R'' p \left[\frac{2S}{2S} \frac{d}{dz} \frac{sisple coupl}{dz} \right]$ $M = \frac{1}{2\pi} R R'' p \left[\frac{2S}{2S} \frac{d}{dz} \frac{sisple coupl}{dz} \right]$ $M = \frac{1}{2\pi} R R'' p \left[\frac{2S}{2S} \frac{d}{dz} \frac{sisple coupl}{dz} \right]$ $M = \frac{1}{2\pi} R R'' p \left[\frac{2S}{2S} \frac{d}{dz} \frac{sisple coupl}{dz} \right]$ $M = \frac{1}{2\pi} R R'' p \left[\frac{2S}{2S} \frac{d}{dz} \frac{sisple coupl}{dz} \right]$ $M = \frac{1}{2\pi} R R'' p \left[\frac{2S}{2S} \frac{d}{dz} \frac{sisple coupl}{dz} \right]$ $M = \frac{1}{2\pi} R R'' p \left[\frac{2S}{2S} \frac{d}{dz} \frac{sisple coupl}{dz} \right]$ $M = \frac{1}{2\pi} R R'' p \left[\frac{2S}{2S} \frac{d}{dz} \frac{sisple coupl}{dz} \right]$ $M = \frac{1}{2\pi} R'' p \left[\frac{2S}{2S} \frac{d}{dz} \frac{sisple coupl}{dz} \right]$ $M = \frac{1}{2\pi} R R'' p \left[\frac{2S}{2S} \frac{d}{dz} \frac{sisple coupl}{dz} \right]$ $K = \frac{1}{2\pi} R'' \frac{S'' r}{2S} \frac{M'' r}{dz} \frac{sisple coupl}{dz} \frac{si$ $h \approx \frac{d^2 R^2}{2 L}$ (Ҳ≪Ц) М-шасса тарелки R M-bogu $\frac{(M+m)\dot{h}^{2}}{2} + (M+m)g h + \frac{I\omega^{2}}{2} = const \qquad \frac{\partial\omega}{\partial t} = \sqrt{\frac{\partial^{2}\omega}{\partial z^{2}}} \quad \omega = \alpha_{0}\beta \sin \theta$ B 50 too 150 ieo 250 m 1991

Summary

- IYPT is a (very) good tool to promote physics
- Helpful even if a student does not join a team
- Unusual problems, know-how, expertise
- Proven educational value, impact on future careers
- Spreading out the YPT to more schools (and more countries)

http://iypt.de

http://archive.iypt.org

Acknowledgement

 A special thanks to Svenska Fysikersamfundet and Vetenskapsrådet for targeted support