8. Internationales Turnier junger Physiker in Spała (Polen)

Schon Monate vor diesem Physikwettbewerb beeinträchtigten sich die Schüler mit 17 verschiedenen Physikprojekten, entwickelten Modelle und bauten Experimente auf. Die Aufgabenstellungen in diesem Wettbewerb sind üblicherweise so knapp und offen gehalten, daß kaum jemand eine exakte Lösung vorhersehbar. Die jungen Physiker müssen also in die Vorbereitung auf das Turnier alle Phasen einer wissenschaftlichen Arbeit durchlaufen, von der Idee bis zur gezeigneten Darstellung ihrer Lösung.

Gleich im ersten Physik Fight ging es in der Gruppe des deutschen Teams um das „FUN-Problem“: An epic Russian hero Ilya Muradov had once thrown his mace weighing forty pounds (1 pood = 16 kg) and in forty days this mace fell at the same place. Estimate the parameters of the throw of the hero.

Richtig, die jungen Wissenschaftler hatten ihre Thesen in englischer Sprache vorzutragen und in Diskussionen zu vertreten.

Zsuzsanna, der Kapitän der deutschen Nationalmannschaft, treu und wie der Sicherheitsaspekt, sich in einem überraschenden, umfassenden Bericht die physikalischen Aspekte vor. Trotzdem blieben die bohrenden Fragen des Opponenten aus Westfalen nicht aus:

"How does the atmosphere of the Earth influence the trajectory?"

"Does it make no difference, whether the mace is thrown vertical in the height or tangential to the surface of the Earth?"

In diesem Wettbewerb war neben profunden Physikkenntnissen auch literarische Taktik gefragt: "Wir fordern als Opponenten einen Thema heraus, zu dem wir noch eine schlägige Lösung fehlen, aber viele Kritikpunkte entfalten. Du mußt den Reporter erst einmal für sein vorzügliches Referat loben und dann seine Schwachpunkte herausstreichen."

Das 9. IYPT findet nächstes Jahr in Georgien statt. Ich hoffe, daß nicht nur private Sponsored, sondern auch Verantwortliche aus der Politik die Bedeutung dieses internationalen Wettbewerbs fördern, der jungen Naturwissenschaftler, Physikern und entsprechend unterstützt.

Probleme für das 8. Turnier junger Physiker

1. Paradoxien
Versuche die gegnerische Mannschaft mit einem paradoxen physikalischen Experimente zu风扇
2. Wasser kochen
Manche Leute halten, daß es um die Energie und Zeit zu sparen, wovor, um einen Deckel auf den Topf zu setzen, wenn man Tee in Wasser kocht. Untersuche dieses Problem und ermittle die Energie- und Zeitersparnis.
3. Trompeten
Ein Schallwasserspeicher trocknet auf einer glatten Fläche und erzeugt ein Ringsystem. Untersuche und erkläre diese Erscheinung.
4. Gravitationsschott
Ein Raumflugzeug in der Form einer fast horizontalen Kugel kann sich von der Erdoberfläche (300 km) oberhalb der Erdsoberfläche ohne Einsatz von Raketen auf die Mondumlaufbahn bewegen. Welche Zeit ist für ein solches Manöver notwendig?
5. Schall
Übertrage die elektrische Energie eines Kondensators Kapazität 100 µF, der mit 30 V aufgeladen ist, mit einem möglichst großen Wirkungsgrad in Schallenergie! Der Einsatz externer Energien ist nicht erlaubt.
6. Schall
Beim manchen Theaterbühnen werden die Lichtwände benutzt. Wie müssen die Lampen installiert werden, um möglichst wenig Bühnenläden einzustellen zu müssen?
7. Drei Scheiben
Untersuche die Zusammenstellung dreier homogener, starrer Scheiben, von denen zwei anfänglich in Ruhe sind, für folgende Fälle:
 a) Die 3. Scheibe treibt die beiden anderen exakt zur gleichen Zeit.
8. Rollendes Teppich
Wenn ein Teppich zusammenrollt wird, kann es passieren, daß er vertikal voranrollt. In welchem Fall kann es nicht passieren?
9. Eis
Stelle eineühltiltes Wasser her, daraus kühle Wasser, und berechne, ob es zu Eis erstarrt.
10. Nahrung
Welche Parameter von den Kölbchen beeinflussen das Durchwachsen gut oder nicht?
11. Mondlicht
Es ist möglich, eine Zeit mit Hilfe von Mondlicht zu bestimmen. Könntest du einen Mondtag bestimmen?
12. Feuerstelle
Wenn jemand ein Feuer anbrennt, wird er zuerst in der Luft, und dann in der Erde, arbeiten. Was gibt es für diese Phänomene?
13. Treffen des Arbeitskreises Computer im Physikunterricht

Mit diesem gewählten Rahmenthema Computer im Physikunterricht sollte der schulpraktische Bezug, der bei den beiden vorangegangenen Zusammen treffen etwas im Hintergrund geblieben war, wieder stärker hervortreten. Entsprechend legten die Schwerpunkte auf Ergebnissen, Vorhaben und speziellen Beispielen des Computereinsatzes im Physikunterricht sowie einem Blick auf andere Fächer. Zudem schrieben die Schüler den Wettbewerb und das Gespräch im Workshop präparierte.

Im einleitenden Beitrag stellte Jost (Uni Kaiserslautern) einen Themenkatalog für die weitere Arbeit des Arbeitskreises vor, der die Diskussion hervorrief und in der Abschlußveranstaltung nochmals aufgegriffen wurde. Der Blick auf andere Fächer begann mit einem Beitrag zur informations- und kommunikationstechnologischen Grundausbildung im Bundesland Sachsen-Anhalt (Richter, LISI Halle). Da Physik zu den fünf Schwerpunktfächern gezählt, ergibt sich hier eine Chance, Computersimulationen und -gestützte Experimente zum Bestandteil des obligatorischen Physikunterrichts zu machen. Nachfolgend erhielten die Teilnehmer einen Überblick über die vielfältigen Möglichkeiten des Computereinsatzes im Physikunterricht.