Bouncing drop
Investigate the motion of water droplets falling on a hydrophobic surface (e.g. coated with soot or teflon)
Hydrophobic Surfaces

- Teflon
- Surface coated with soot
- Natural materials
Structure of a superhydrophobic surfaces
Destroying of the surface structure
Experimental setup

Camera

Drop

Eagle

Hydrophobic surface
Stages in drop’s behavior

1. Oscillation
2. Bounce without a break of the droplet
3. Bounce with a break of the droplet
4. Splash (destroying of the droplet)
Oscillation

R=1mm
H=0-3mm
Characteristic oscillation

We have approximated the shape of the drop as an ellipsoid

\[E_{kinetic} + E_{surface} = \text{const} \]

\[\frac{\partial}{\partial t} \left(E_{kinetic} + E_{surface} \right) = 0 \]
Characteristic oscillation

\[\omega_{\text{min}} = \sqrt{\frac{8\sigma}{\rho R^3}} \quad (1) \]

\(\omega_{\text{min}} \) is minimal drop’s frequency
\(\sigma \) is surface tension of the liquid
\(\rho \) is liquid density
\(R \) is drop radius
The dependence of the minimal drop’s frequency on the radius

\[\omega_{\text{min}} = \sqrt{\frac{8\sigma}{\rho R^3}} \]

(1)
The Conditions for oscillation

\[H \leq 3R \]

H is the initial height of the drop
R is drop radius
Bouncing

R=1mm
H=3-14mm
Coefficient of restitution

\[c = \frac{h}{H} \] \hspace{1cm} (2)

C is the coefficient of restitution

h is the height of the bounce

H is the initial height of the drop
The dependence of the restitution coefficient on the initial height of the drop
Bounce with a break of the droplet

R=1mm
H=14-350mm
Why does the drop break?

- The surface energy becomes more after contact with surface because of the shape changing
- Liquid “wants” to make it’s energy less
- The surface energy of droplets is less than that of a cylinder
- So the cylinder divides into small droplets
The drop can sound

$R=1\text{mm}$

$H=15\text{mm}$

Air
Movie with wood
Movie with hot surface
Splash

R=1mm
H=350mm - ∞
\[n = \frac{8mgH}{9\pi\sigma^2} \] (3)

- \(n \) is the number of small droplets
- \(m \) is the mass of the drop
- \(\sigma \) is surface tension
- \(H \) is the initial height of the drop
Setup for measuring surface tension

Design formula:

\[\sigma = \frac{\rho V g}{N \pi D} \]

- \(\sigma \) is surface tension
- \(\rho \) is density of liquid
- \(V \) is volume of liquid
- \(D \) is diameter of needle
- \(N \) is drop’s number
- \(g \) is gravity acceleration

Number of drop

\(N = 1000 \)
The dependence of the minimal height of the drop on the surface tension

\[H, \text{ sm} \]

\[\sigma \cdot 10^{-3}, \text{N/m} \]
The dependence of the minimal height on the drop radius for splash
Summary

- I have investigated all the stages we can observe in drops motion on a hydrophobic surface.
- I have made a theoretical and quantitative experimental research.
- I have investigated experimentally such parameters as the initial height of drop, drop radius, liquid surface tension, and type.
Summary

• I have also said about such parameter as viscosity and its influence on the bouncing, but I haven't made the experimental research.

• I have found such an event like a drop’s sound of a very high frequency and have quantity
Thanks

• To Jakub Krolikowski, Polish scientist and my friend
• To Mathilde Reyssat from ESPCI (Paris, France)
Thank you for your attention!
Experiments with a slanting surface