6 SOLUTIONS OF THE VII'™" IPYT PROBLEMS

Problem No.1 - Optics

In this task we decided to solve the problem of the maximum distinguishabil-
ity of a lens telescope (known as a refractor). We used the principles of wave op-
tics and compared theoretical results with practical observations.

-~ Introduction

Firstly, we should explain how this type of telescope works: let's consider
a stream of parallel beams of the same phase (i.c. they form a plane wave front).
First they pass through a round entry slot where so called Fraunhoffer's difraction
occurs, next they pass through the objective which is a converging lens with
a large focal distance concentrating the beams on the focal point. There is a scc-
ond converging lens behind the focal point (an eyepiece) from which the beams,
which were divergent up to this point, emerge parallel. These can be observed
visually. Using geometrical optics we can assume that while using an ideal objec-
tive an object at an infinite distance will be projected on to the focal plane at
a single point. In reality, however, thanks to wave base of light a divergency of
parallel beams in the entry slot occurs. That means that the object is appcears as
a disc. We will now attempt to describe it (its size and the intensity of its parts).

Fraunhoffer's diffraction on the slot

According to Huygens' principle the beam that has come through the slot
propagates in all directions behind the screen. This is true in the case of the (tele-
scope entry slot as well. The beams deflected away from the optical axis will be
concetrated into a single point in the focal plane, due to the objective. We are in-
terested in its intensity in relation to the angle of their deflection from the optical
axis. The evaluation will be done using the complex amplitude (it's second power
is equal to the intensity of light at a certain point) — it can be expressed by planar
integration of the elements of the area of the section perpendicular to the de-
flected optical axis. The result for a round entry slot is a so called Bessel's func-
tion. This can be approximated using goniometrical functions (e.g. ((sin x): x)* -
see Fig.9). We can see that the intensity of the points of light oscilates with in-
creasing distance from the middle of the disc. The first minimum occurs for the
angular distance a = 0.61.1: D (l is the wave length, D is the diameter of the ob-
jective). The other maxima follow — altough they are much weaker then the first
one (Fig.9) and so they can be neglected. (The parameter of the disc is assumed
to be the distance of the first minimum from the middle of the disc.)

Fig.9 Mathematical model

of the disc projected
on the screen
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Evaluation

First we have to establish the contribution to the complex amplitude caused by
wave motion that is caused by waves emerging from the element from the area dg

of the plane of the entry slot. If we assume that their amplitude is directly propor-
tional to this area do;, we can say that:

dS=cdoexp (i{ut + 2)xd: 1) (1)

where dS is the addition to the complex amplitude we are looking for, u is the fre-
quency of light, / is the wave length of light and d is the difference in distance of
the particular clement (signed do) of the wave front that passes through the center

of the lens from the plane of the slot (this distance is of course measured in the di-
rection of the wave), so we can say that d = x sin «.

Now it is suitable to set in the polar coordinates Sand & (8- distance from the
middle of the slot, § - angular coordinate, r - perimeter of the slot), that means:

x=r+&cosf (2), do =dBds 3)

from (2) follows d = r sin @+ & cos Bsin a (4). Substituting (3) and (4) into (1)
wce gel:

dS = ¢ exp (i(ut + 2z (r sin @ + &cos Bsin a): 1)) pgdéds (3)
after arrangement: |
d$ = ¢ exp (i(ut + (27 r sin @): 1)) exp ((2ridcos Bsin a): 1) BdS ds

after integration over the whole area of the entry slot (that means S from O to r

and & from O to 27) we get a form which gives every wave of a certain frequency
a complex amplitude:

2

k=c I Iﬁexp (2xicos dsin a) dfdd (6)
p=0 5=0

if we multiple k by a number that is complexly conjugated to it, we get the value
of the square of the real amplitude, i.e. the intensity of light at a certain point in

the focal plain of the lens (the integral (6) can be converted to the so called Bessel
s function):

I=1 7°r (1 - -2'-m + (M2 3~ (30 14+t 41)P - )2 (7)

where m = xr (sin a): 1. The last equation (7) consequently shows the relation of
intensity of a certain point of the focal plain with the angle of deflection a. As we
have said, we are interested in the first minimum of /, which according to the
cquation (7) occurs for @ = 0,61r: .

The problem of maximal distinguishability

We have just found the size of the disc projected on the screen, placed in the
focal plane. Now we want to find how far from each other the discs of two differ-
ent objects must be in order to be able to distinguish them from each other. Let's
examine a section which crosses the centre of each of the discs. There are three
possible types of graph which show the course of the intensity — they are marked
a, b and c. We can see that in case ¢ we are no longer able to distinguish the two
discs from each other. Case a shows the two discs as two independent objects and
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finally, case b shows the discs from the nearest point from where they are stll
distinguishable. It is obvious that the lowest point between the two maxima in the
intensity course must be sufficiently deep for the two maxima to be distinguish-
able. For visual observation its depth must be at least 20% of the maximum inten-
sity (Rayleigh's criterion). When using modern equipment we can distinguish
10% or even 5% as well. We stayed at the level of 20% because the equipment in
question is rather difficult to come by. This Ievel reflects the distance of the mid-
dles of the discs equal to the perimeter of the discs. We will make it cqual to the
maximum distinguishability — in our case the smallest distinguishable anuglar dis-

tance equals 0,61 . r: L
Experimental comparison of the results

In view of the fact that theoretical results are rarely identical to real ones (¢.2.
hecause of the fact that we assumed the lens was ideal), we decided to observe
several binary stars. All the photographs come from the observatory at Petffn in
Prague. We used telescopes made by The Carl Zeiss Jena company with objective
diameters of 180 and 200 mm.

The following table shows all of the observed objects (photos taken on 28th
and 29th March 1994):

No. object angular distance
1 pi Boo 3,6"

2 gamma CrB 0,7"

3 gamma Leo 44"
Summary

The photographical materials confirm our evaluations fairly well. Especially
gamma Coronae Borealis with an angular distance 0,7" confirmed that the theo-
retical and practical results are in sufficient conformity. So we can see that the
distinguishability of the telescope doesn t depend on overlighting (very consider-
able esp. in Prague) and by a calm atmosphere very good results can be reached. «

At the same time we can see the binary stars with very small angular distance
(close to the maximal distinguishability) are really very hard to distinguish (e. g.
mentioned gamma CrB) and a good photo of such an object must come only from
the hand of a skilled photographer.

Problem No. 2 - Compass

The problem, as formulated by our team, is based on a detailed analysis the
one described by Cherry-Garrar. We decided to state it in the following way:

Describe the magnetic field of the Earth which affects the magnetic com-
pass needle and explain how to eliminate the sudden changes in the direction
of the needle, in order to the determine which direction north is?

If we want to obtain a precise picture of Earth's geomagnetic field, we would
have to measure the intensity and direction of the magnetic field of the cntirc
globe. Unfortunately, the Earth's magnetic field varies in time and it is also very

33



