Now we will substitute (1) into (2)

| (Vn=Va-1)? . (Vn = Vpet Ve
d,= 3=+
_ V=Vl Vp+V,.
“= ", 3 (3)
substituted back to (1): 1 = _2dn
Va + Vp-

In the sccond phase of calculation we use the following fact:
F,+ @v-F_ =F, wherc

F_.... acrodynamic [rictional force

Ov ... magnetical friction force

F, ... gravitational force

F ... resolving force acting on the magnet, we can calculate it for

cach interval in each experiment using formula (3).

There is a magnetic frictional force equal to zero in the glass tubes. Therefore
we can usc this case to investigate the dependence of aerodynamic friction on the
speed of the magnet and we can consequently find the size of @ This is shown in
graph 2.

SUMMARY

We have described the situation theoretically. We found out, on what and how

the magnetical frictional forces acting on the falling magnet depend. We have
also experimentally verified these theoretical results.

As we assured ourselves, the magnet's velocity in the tube will be stabilized

after approx. 0.5 + 1 s (depending which tube is used) at a certain value. We can

see, that the magnetic friction is much higher than the aerodynamic one from the
graph 1.

The difference between the theoretical results and practical measurments are

caused mainly by the fact that the magnet does not fall precisely down the tube's
axis, which means that the magnet has a tendency to turn, which increases the
mechanical friction. It also has to include the aerodynamic friction.

Nevertheless, We can conclude that our experiments prooved that we can use
our theoretical model in the simulation with reasonable accuracy.

Problem No.4 - Upper Boundary

We solved this problem both experimentally, using the device described be-
low, and theoretically, using methods from mathematical statistics and a com-
puter simulation.

As regards our technical possibilities, we conducted the experiments using the
following set-up: As the "flexible plate”, we used a steel plate glued to a loud-
speaker. The signal from a tone generator was fed into the loudspeaker, amplified
to sufficient power by an amplifier (15W). Also, we attached a glass tube to the
plate and put a steel ball of 3mm diameter into it.
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The amplitude of the plates's oscillation at low frequencies was 4mm, as
measured. The [requency of the signal could be changed to any value, but only
small range was of a practical meaning for us, because the oscillations' amplitude
decreased abruptly at higher frequencies (already at approximatelly 100 Hz) and
the ball didn't even jump off from the plate. This limitation was caused mainly by
mechanical properties of the loudspeaker and couldn't be passed because there is
actually no better equipment for such a purpose. After all, the work wasn't com-
pletely ideal even at lower frequencies (oscillations weren't perfectly harmonic
and the results were also affected by the dependence of the amplitude on the fre-
quency, which can't be expressed generally). The ball jumped to a maximum
height of its own resonance frequency of the loudspeaker body (25 Hz), at higher
frequencies it jumped lower and soon stopped jumping at all. Because of this the
experiment could serve only for finding the qualitative basis, while other ways
had to be used for its numerical expression.

An analytic solution of the problem appeared to be impossible, because it
nceds to solve a set of complicated differential equations, even with random
quantities. Therefore we solved the problem numerically, with a computer simu-
lation. Our program simulates the behaviour of a ball jumping on the flexible
plate, numerically determines a moment of the collision, calculates impact veloc-
ity and maximum height of the jump and can even show the distribution of par-
ticular quantities’ values. All the information obtained is of good quality and
agrees with the experimental data within the limits of accuracy.

Let's consider a ball falling with the velocity v. If the coefficient of restitution
is » and instantaneous velocity of the plate is u (sign positive, if the plate is going
up, and negative, if it goes down). Then the velocity of the ball, related to the
plate, is u + v and the ball rebounds with velocity r (4 + v), pointing indeed up-
ward. Because the coordinate system connected with the plate moves with veloc-
ity u related to the ground, the rebounding ball's velocity is rv + (1 + r)u in the
system of ground. As defined, v must always be positive, while u can differ from
~U to U, where U is the maximum possible velocity of the plate (U=Y sing2,
Where Y, is the amplitude of the oscillation and £2 its angular frequency). The
new velocity may also be negative, meaning the ball falling onto quickly de-

scending plate is "taken" by its motion and although it rebounds up, in relation to
the plate, its further movement is downwards in our system.

Let's introduce a quantity E'= 2E_/m. We can suppose that the potential en-
ergy of the ball impinging on the plate is zero (actually, it differs in different po-
sitions, but few milimeters of difference are negligible in comparison to heights
of tens of centimeters, which the ball reaches, jumping). Then the "reduced en-
ergy” of the ball falling onto the plate is v* and that of the ball rebounding is
v+ 2(1 + Puv + (1 + )’ In a long-term scale, energy losses at rebound of the
plate, which is not perfectly flexible, are equal to the energy increases, caused by
the plate's movement and following “tennis-rocket effect”, as we could call it.
How much is that increase? Experiments and both simulations show that the
phase of the plate's oscillation is quite random. As we can easily see, onc jump of
the ball takes considerably more time than one period of the oscillation, so any
resonance is impossible (also because of many random influences). Therefore it's
as probable that the ball falls onto the plate when its velocity u, as that it falls onto
the plate at a velocity —u,, mean value is then O (as we can also easily find with
integrating, which is quite trivial in this case). However, the mean value of ulis
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(as we find again by integrating) U*/2. If we record the mean impact velocity of
the ball as v,, it's possible to write

= rivi 4+ (14 r)*U*/2, and then v, = UJ[-%-(I +r)i(1-r)] .

Bccause the maximum height of vertical throw up is v*/(2g), mean height of the
bail's jumps will be h, = U*(1 + r)/[4g(} — r)}, i.e. proportional to the square of
the plate oscillation frequency. Experiments and simuiation show a very good
agrecment with this theoretical forecast.

Actually, the ball of course jumps to many different heights, both lower and
higher than h. As measuremenis and experiments show, the maximum heights
really reached arc approximately h__ = U(1 + r)/{g(l - r)). Also in this case the
resultant value is directly prc)porlmnal 1o the square of maximum velocity of the
plate,

SUMMARY

The conclusion of both theoretical calculations and the practical experiment
is, that maximum height the ball can reach is directly proportional to the square
of the plate's oscillation frequency {supposing the amplitude to be constant) and
depends very significantly on the coefficient of restitution.

Fig.12 Experimental verification of the theoretical model.
Photo M. Prouza

Problem No.5 - Distribution Function
INTRODUCTION

This problem isn't set out in a way which is easily understanable. It is not
clear, what the sense of words "what part of the time" is and what quantities H
and dH should mean. After a thorough analysis of the whole probiem we con-
cluded that we are to find out the probability (here identified with long-term rela-
tive frequency) of the ball's occurence at certain place. Regarding the effective
impossibility of determining any values experimentally due to very short intervals
between successive falls of the ball to the platform the basis of our work consists
of theoretical deduction and conducting experiments mm a computer model of
the given phenomenon.
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