(as we find again by integrating) U*/2. If we record the mean impact velocity of
the ball as v,, it's possible to write

= rivi 4+ (14 r)*U*/2, and then v, = UJ[-%-(I +r)i(1-r)] .

Bccause the maximum height of vertical throw up is v*/(2g), mean height of the
bail's jumps will be h, = U*(1 + r)/[4g(} — r)}, i.e. proportional to the square of
the plate oscillation frequency. Experiments and simuiation show a very good
agrecment with this theoretical forecast.

Actually, the ball of course jumps to many different heights, both lower and
higher than h. As measuremenis and experiments show, the maximum heights
really reached arc approximately h__ = U(1 + r)/{g(l - r)). Also in this case the
resultant value is directly prc)porlmnal 1o the square of maximum velocity of the
plate,

SUMMARY

The conclusion of both theoretical calculations and the practical experiment
is, that maximum height the ball can reach is directly proportional to the square
of the plate's oscillation frequency {supposing the amplitude to be constant) and
depends very significantly on the coefficient of restitution.

Fig.12 Experimental verification of the theoretical model.
Photo M. Prouza

Problem No.5 - Distribution Function
INTRODUCTION

This problem isn't set out in a way which is easily understanable. It is not
clear, what the sense of words "what part of the time" is and what quantities H
and dH should mean. After a thorough analysis of the whole probiem we con-
cluded that we are to find out the probability (here identified with long-term rela-
tive frequency) of the ball's occurence at certain place. Regarding the effective
impossibility of determining any values experimentally due to very short intervals
between successive falls of the ball to the platform the basis of our work consists
of theoretical deduction and conducting experiments mm a computer model of
the given phenomenon.
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SOLUTION

Let's consider the course of the function we are looking for during one par-
ticular jump. Let s assume that the ball reaches a maximum height H; then its
overall mechanical energy during the jump is £= mgh. Searched function of dis-

ribution, i.e. f{k) = dt/dh, holds
RhH)=dt/dh=(dh/v)/dh=1/v=1] J2(E~-mgh)/m =

_ =1/J2(mgH—-mgh)lm =1/ f2g(H-h) = ‘/i__ —z—f}!——}-—)—
2¢ I

A Graph of this function is given in the supplement.

Further, let the density of probability of H itself be p(H)=dp JdH. We can
casily derive that the overall formula for f{#) without dependence on K is found

by integrating
fih) = Zp(m fhH) dH

where integrating is done along H and X is considered as a parameter. General
analytic solution is out of our capabilities, though, and so we expressed f{/1) using
computer simulation (see problem 4).

In such a case the solution could have been done in two ways. The first onc
was repeated many times, choosing ¢ at random, finding of respective & and draw-
ing a histogram for sufficiently small dh. The other possibility was numerically
carrying out the above mentioned integration: with empirical knowledge of p(H)
or in fact p(H)dH for small dH it would be possibie to determine f{) for certain
fixed h by summing along all dH; then repeat the procedure for & increasing dh.
We chose the first method.

In order to fulfill this task, few small changes in the program were done. We
computed the ball's jumping during quite a long time (300s), we randomly chose
6 000 moments in this interval and in the course of the program we were printing
the ball's position in given moment. The results are processed into a graph, i.c.
histogram with step dh = A___{500.

CONCLUSION

The result (shown at Fig. 13) is finding frequency {in the graph marked m) of
the ball's position in particular heights (in graph marked H, given in meters). For
norming to the relative frequency divide m by 6 000. The distribution has the dis-
tinct shape of the Gauss curve, at which only random deviations show up. It's ob-
vious that this function has a maximum of 4 near zero, its value decreases quickly

with growing & and it is almost zero, for # — &, . The distribution dt/dh shows
a remarkable similarity to the distribution dp/dh, i.e. density of probability of the
ball's jumps’ maximum height.
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Fig. 13 The frequency of ball's position in particular heights

Problem No.6 - Acceleration

Let s consider one impact of the ball. According to the solution of problem
#4, a ball falling with velocity v has a velocity of magnitude r. v+ (1 + r). u af-
ter the rebound, where « is momentary velocity of the plate. Further: because the
ball reaches heights of approximatelly 10 c¢m, different positions of the rebound
plate in the moment of the ball's impact can be neglected and potential energy of
the ball in this point can be considered zero (error is at most 10%). Then overall
mechanical energy of the ball during one jump (losses caused by air resistance are
at low velocities in our case fully negligible) is equal to kinetic energy at the mo-
ment of impact and rebounding, respectively. Further, let's introduce quantity

E'=2E,[m, where m is the mass of the ball. Then obviously E’ before impact is
equal to v’ and after it

(rv+ (L + AuP=rv+ 2(1 + Nuv+ (4 + rur

Let's think on: As we've shown in problems # 4 and 5, the mean value of u is
equal to zero and the one of u to one half of squared maximum value of u, i.c.
U*2. Because the setting speaks of long-term average, we can without problems
substitute variable quantitics with their mean values and express energy after n-th
rebound

E. '=rvi+(1+rYU/2

which in comparison with E "= v’ results in relation for energy increment after
n-th rebound

dE ‘= (1 + U2 - (1 = PV
After substituting C = (1 + r)*U?/2 and with knowledge of v’ = E’ we get
dE'= C= (1 - A)E,’
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