This opinion was confirmed by the scientists from the Botanical Garden in
Prague as wcll.

Requirements of the Movement

Of coursc, we musl deal with the question of why this movement occurs only
in aspen leaves and not for example with oak ones. These conditions can be char-
acterized in the whole as morphological. The best way to explain this is a
comparison.

Firstly - the aspen leaf-stalk is quite flat, that means if is very easy to be bend
(the section of the oak one is round). Next fact is that the joint between the stalk
and the blade has only very small area (the plane of the blade is perpendicular (o
the plane of the stalk) and therefore although it is very firm, it is very flexibile as
well. Besides that the aspen stalk is quite long compared 1o the oak and so less air
flow is necessary to make the leaf move. We must consider as well, that the axis
of the stalk and the planc of the blade contain an angle of 20 degrees. Al men-
tioned gifts of the aspen leaf are shown on the picture.

There is yet another experiment that was done. We were finding the centre of
gravity of thc leaf with and without the stalk (sce photo). The result showed that
in both cases it is placed quite near 1o the point of joint between the stalk and the
blade of the lcaf, which makes the leaf even more easy to trembie.

Summary

The problem was posed in a very imprecise way — it wants us to find the
causes of a phenomenon which — in reality — does not occur. We showed (and
consequently verified by a practical experiment) that the aspen leaf requires a
very light air flow. On the other hand it has very good conditions for movement
(these are mentioned above). They are quite wslble in the photo below and in the
real leaf.

Fig 14 Détailed:fphﬁto of an aspen le}?a_'f:": '

Problem No.a Superball

INTRODUC’ TION

- This task scems to'be one of thc most interosting We selved 1t méoreﬁcally -
we produt:cd two physical models of the situation. -

~ The ball has mass m=823"g, dmmeter R 2.6 m‘n and ‘we. drop it from
the height A, = 5 cm. Wy
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SOLUTION

We were interested in the question of when we reach the most jumps, i.c.
when the base is as hard as possible .

The ball rebounds from the hard base and jumps to the height &, falls, jumps
again to the height h, etc.

The ratio between the rebound velocity and the impact velocity is called the
coefficient of restitution, the symbol used for it is r (according to the literature).

P2 V28h _ \/’Tl
v 2gh, b,

where #, is the height of the fall and A, is the height of the jump

This coefficient shows the extent of energy loss by impact. All energy lost
during the action is covered here.

We didn t consider in any of our calculations, resp. the coefficient of restitu-
tion does involve following phenomena: air friction, elastic waves extending in
the ball during the jump and deformation caused by them, the irregular shape of
the ball — it hasn't the proper shape of a sphere.

The height &, , is obviously smaller than &,. Then the amplitude of jumps be-
comes smaller. The question is when it stops jumping. A certain amount of en-
ergy won't be sufficient for the rebound of the ball. How can we find this

boundary?

The ball is deformed with every fall. After a short time, the ball returns to its
original shape, resilience, the energy of elasticity changes back to kinetic energy
and the ball rebounds. We can mathematically determine the boundary of maxi-
mum deformation from the energy, that the ball has when its center of gravity is
at the lowest point. We consider the loss of energy during the deformation is as
big as the loss during the extention, what is an approximation. The conclusion:
the energy at the moment of maximum deformation is (E,, , + E,)/2.

The ball stops jumping as soon as the energy is just enough to lift the center of
gravity y higher, the energy is equal to m.g.y. Then jumping turns into vibration.

We would like to explain, why we can ignore the air friction effect. We calcu-
lated the ratio between the energy losses caused by air friction and by the coeffi-
cient of restitution within first jump and because the decreasing power is
proportional to v*, it means, these losses are the highest ones.

The calculation:

C =06 . coeff. of ball's aerodyn. resistance
p  =12759kg.m™...... density of air (overastimated)
m =000823kg........... ball's mass

r =0.026 m ................ ball's perimeter

hy, =0.05m

h, =0.0405m

Y 2 o effective cross-section

g =981m.s”

<

¥
-
S’
1!
M-
o0
:

.................... impact velocity
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Flv) = %cSpvz .................. decereasing power caused by {riction

L = _[F(x) '4 b energy losses
hg hy

Lair = [LcSpvi(R)dh + (L cSpv?(h)dh
0

Lrest = mg(h,~ h,)

Lair ........ losses caused by air friction

ratio o
Lrest ........ losses caused by coeff. of restitution

ratio = 1.076 %

We sce, this ratio is so small (remembering overastmation of c), that we can
neglect air friction effects completely.

1. Experiments
In the experimental part we measured the coefficient of restitution first.

We took photos of the first two jumps with the camera that with an open shut-
ter. The coefficient of restitution can be determined from the proportion of the
heights we have photographed.

The conclusion of our experiments is: the coefficient of restitution is approx.
= .85 (for the impact velocity 1 m.s™).

Then we tried to measure the number of jumps by digitalisation of the micro-
phone signal. The microphone was placed under the china cup. The cup is very

suitable for this purpose because it has big mass and solidity. The used cap had
2 concave bottom, so the ball didn't run away.

At first, we tried to digitalise the signal with the help of the sound card
"Sound Blaster” that enables 8 bit sampling. We used Windows (Sound Secorder,
Pocket Utility). Due to the low sensibility of earphone we had to use preamp. But
we didn't gain satisfactory results. We were forced to use ISES (Inteligent School
Experimental System). Using ISES we attained interesting results but we couldn't
count all the jumps becanse of noise in the last part of jumping.

Alithough, we werc able to measure the time of jumping, it was 4.1 + 4.65, as
it's visible from our experiments.

2. Theoretical models
a) model 1 - the mass point on the spring
The first approximation we used was based on following assumptions:

I) The coefficient of restitution is constant (for each ball), independent on the im-
pact energy. In that case we can consider that the energy £, is left from the start-
Ing energy.

IT) The force for the compression of the ball is directly proportional to this com-
pression y. The ball is placed by the spring with certain l‘lgldll)! Its length equals
the perimeter of the ball.
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Consequences:
The height: k., =rh = h = h,r”

The time: Tn=2/2halg = T,=2 [2holg r", h and T,are max. height
and time of »#-th jump.

The assumption II implies: F = —ky, where k is the ball's rigidity. The results
of our experimental measurment is: k=3 +4kN.m"™.

Max. depression we can determine from £ = %-ky: .

y= J2Elk , where
E =mgh_(1+ r*)/2 ... ball s energy in the time of max. depression.

If the rebound energy is sufficient just for lifting the ball y higher, jumping
turns into the vibrations.

En+ 1 = Ep
mgh,r = mgy
hr =mgh (1 +r)/k
hrt =mg(l + )k
2 It is the minimal height of the jump.

h, = M After the fall from this height the ball

kr stops jumping and begins to vibrate.
In (k) = In (h,r™") But we are not interested in this height,
i _ In(ha)=In (ho) | but we would like to know the number

2In(r)

The rigidity of the ball was determined experimentally. We pressed the ball
by height and measured the depression. The rigidity was (3500 + 500) N.m™.

We will get for our values: /= 52 m, n = 60 jumps.

This model looks very nice and accurate, but it doesn't work. We found, that
the experimentally found time of jumping was not equal to the time determinated
by our model. The main mistake was assumption that the coefficient of restitution
is constant with the time. Its real dependence on the impact velocity is showed at
the graph. The coefficient of restitution closes to 1 with lJowering impact velocity.

It is not true that the force needed for y pressing the ball is dircctly propor-
tional to y. Hertz s task says that the force grows with A

These facts forced us to make a more complicated and proper model.
b) model 2

Model 2 is based upon following assumptions.

I) The coefficient of restitution is not constant, but in our interval of impact

velocitiese <0, 1 m.s™' > could be approximated with a line scgment between
points [0, 1] and [1,rs,], where ra, is a coefficient of restitution by impacl of the
height h,. We follow the graph showing the dependence of cocfficient of restitu-
tion on the impact velocity.
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IT) Compressing of the ball is described as compression of the sphere, i.e.
force grows with h’? according to Hertz s theory.

The mathematical expression of the assumption I is:
r=(rn, — 1)v+ 1, where v is the impact velocity.
Note: We substitute a = rp, — 1.

The dependence between the jumps height and the prcvious one is:

h . = hr?, substitution:

h . =h(a[2ghy +1) (1)
The next height:

h,,,=hla2ghs + 1) [a [2gha (a [2gha + DJ

The length of the equation grows with each successive height. It is not possi-
ble to derive a general relation from the recurent relation (1), as was possible in
model a. We tried to substitute the line segment with some other curve as a part

of parabola or exponentional curve and so on. All the possibilities lead to useless
recurent relations.

Therefore we had to use numerical methods and a computer. We wrote a pro-
gram which calculates the jumpes for both models numerically. It determines the
ball's deformation corresponding to the coefficient of restitution, the duration of
the jump, the duration of the deformation and overall time of jumping. Let's cal-
culate the deformation y. We assume that the energy in the time of the maximal

deformation is equaled to a mean of energies before and after impact because the
ball's energy is changing into heat fluently.

F=—ky'?, W=[Fdy, w=2/5y"

_[5w 3 | Smg ;

y“[zk] _[ 4k (hﬂ+hn+l)] -

In this case, we had to determine the constant k more accurately than in the first
case. Using the Hertz's theory again:

y= F¥*{D1/R + 1/R)'/, where R is first's and R’ the second’s ball perimeter
(Hetz's theory is about two ball’s impact, in our case 1/R’ equals 0).

2 a2
D=§-(l Ve +1 a']
4 E E’

where o and ¢, resp. E and E' are the Poisson's ratios resp. moduluses of elastic-
ity of materials from which the balls are made. In our case, the primed values are

used for thc pad and normal ones for the ball. Neccessary values are shown in fol-
lowing table:

Vi | o | EMPaL_
T | o | 11
55,000
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We can write: y= F22[D* [ RY)/*,

F=nrw"*fRID .

F=h"F,

k= JR/D .

Value of k expressed numerically: &= 2i7000 N. m™/?

How to determine the time of ball's deformation? We used the Hertz's theory
agaiit.

y S\1/5)
I "'7‘[ dy _,{m) J dx
d""'- — ] Tl

O;JVZ-ky”z/m kv o V1= x%/3

where m is the ball's mass, v is the impact velocity, & is a constant equaled to 4 .
JR/5D | yis the ball's compression.

This formula was numerically integrated and then used in our program.
When we solved this problem by computer, we get these results:

n= 143 jumps
t=4608 s

SUMMARY

We've done several experiments. We determined the ball's coefficient of resti-
tution when the impact velocity was 1 m.s™, we tried direct measuring of ball's
jumps, but the iast ones got lost in noise.

}‘Je found out, the coefficient of restitution was 0.85 and the ball jumps for
4.1/4.65s.

The theoretical part of solution consists of two physical models of real situa-
lion. The first one is quite simple and the approximations are too rough. The sec-
ond one uses the Hertz's theory and can not be solved analytically, we have o use
numerical methods and computer. In this model we also include the time of con-
lact (about [2% of overall time). Using this model, the theory was cofirmed by
the experiment. This model says, the ball rebounds about 140 times.

The difference between the experiments and our second model are small and
they could be explained by inaccuracies that arose while we were measuring the
coefficient of restitution and by used approximations.

Program HOPIK;
uses Printer, Graph, Cxrt, GDFSoftl, Strings;

const
ho = 0.05;
rm = (0.013;
rh = 0.85;
g = 9.81;
alfa = ] -« 0.119;
a = rhO - 1;
m = B.23e-3;
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k = 2.17e5;
kp = 3500;
MaxN = 300;

Px = 10;

Py = 10;
ScreenX = 639;
ScreenY = 479;

Barvy : arrayf(l..9] of byte = (white, lightred, lightgreen,
lightblue, yellow, lightgray, green, blue, black);

var
h, hp, r : double;
Y, YP : double;
tt, € : double;
delta + double;
n : word;
ch : char;

procedure Inic;

begin
TextMode (259);
h := hO;
hp := h0;
r := rhQ;
y := 0;

yp := 0;

tt := sqrt (2 * h0O / g):

writeln (lst, 'Model B - coef. of restitut. grows from
value', rh0:3:1, ', HO = ', h0:5:3, ' m');

writeln (1lst, 'K ="', k:6:0, ' N.m"2/3');

writeln (lst):

writeln (lst):;

writeln (lst):;

writeln;
n :=1
and;

procedure Pis;
var

s : array(l..6}] of string;
begin

stx2 (H, 3, slil]):

str2 (Hp, 3, s(2]));

str (y * 1000:6:4, s{31):

str2 (delta, 3, s(4]):

str2z (t, 4, s(3]}):

str (tt:5:3, s{6]):

writeln (lst, 'N:', n:3, ', r:', r * 100:3:1, °, H:', s[l],
{*, Hp:', s(2),}', y:', s[3], ', t:', s{5], ', tt:’, s(6], ',
delta: ', s(4}});

CekejNaKlav
and;
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procedure Kresli;

R)), Barxvy({3));

var :
x, k : word; )

begin
x := round (N / MaxN * ScreenX) + Px;
PputPixel (x, round (ScreenY * (1 -
putPixel (x, round (ScreenY * (1 - y / Rm)

Barvy(3]1}:

=~ PY},

PutPixel (x, round (ScreenY * (1 - yp / Rm) - py),

Barvyl(6]):

PutPixel (x, round (ScreenY * (1 -
Barvyl4]):

PutPixel (x, round (ScreenY * (1 -

end;

procedure InicG;

var
k : word;

bagin
InicGrafiky ('c:\tp\bgi'):
for k := 0 to ScreenX do

Hp / HOJ

H / HO)

PutPixel (k, ScreenY - Px, Barvyl[l});

for k := 0 to ScreenY do
PutPixel (Px, k, Barvy[l]l):;
Kresli
end;

begin
repeat
write (‘Kreslit (k) / Psat (p)? °
readln (chj
wntil ch in ['X', 'K’', 'p', 'P');
Inic;
if ch in ('k', 'K'] then InicG;
{ for nm := 1 to MaxN do
begin})
repesat
hp := hO * exp (n * 1In (alfa)j};
tL = tt + &;
= a * sqrt (2 * g * h);
:= h * sqgrt (r):
2 * sqrt (2 * h / g);

< M O H
i

fa * sgqrt (2 * g * h) + 1))));
Yp := sqrt (2 *m * g * hp / kp):

)i

- PY) .,

- PY), Baxvy{2])

c=mexp (2/5*1n (5/4*m*g/ k*h* {1+ sqrt

delta := y - h * sqr (a * sqrt (2 * g * h) + 1);

if ch in {'k', 'K'] then Kresli
alsa Pis;
inc (n);
until delta > 0;
( end;}

CekejNaKlav
end.
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