Problem No.11 - Siphon

Our solution focused on those models which — due to the practical setting of
the probiem — correspond best to the reality:

a) removal of the siphon from the lower vessel.
b) removal of the siphon from the upper vessel.

The water flows through the hose due 1o the different water pressures in the
individual sectors of the siphon. This pressure difference is determined by the po-
sition of the bubble. It is therefore evident that the water can flow from the higher
vessel into the lower one only when the water column in the siphon (in the

bubble-lower section) is higher that the height of the column in the bubble-upper
vessel section. |

I. AB.

If we want the water 10 keep flowing, we must make sure that during the
whole lime the siphon is removed, at least some quantity of water in the bubble-

upper vessel seclion is kept under the surface level of the water contained in the
upper vessel.

II.

In the second parl of the solution, two cases may occur: the bubble is too long
(due to the long time during which the siphon was pulled out) and static equilib-
rium sets in when the bubble stops moving to equalise the hydrostatic pressures
caused by the water columns in the individual sections of the hose. In the other
case when the length of the bubble is under a certain value, there doesn t exist a
position when the water column heights (and thus also the pressures) would be
the same — the pressure of the water column in the section delineated by the bub-
ble and the lower vessel is higher. The exciting pressure difference keeps the wa-

ter (and the bubble) in motion until the bubble "escapes” from the walter
contained in the lower vessel.

IL.A

We chose as the first model example the situation shown in Fig.19a. The si-

phon consists of two vertical straight sections which change into a circual curve
in the upper section.

1.) Let us assume that the height difference of the water surfaces in both ves-
scls equals to §h. We will then suck in a bubble of the exact length of dA. In the
initial position (the bubble has just closed) the pressure is definitely higher in the
bubble-lower vessel section. The bubble will start moving. At first, the pressure
will go up in both sections, both ends of the bubble will move upwards. From the
moment when the "front” end of the bubble floats over the top of the curve, the
following happens: the pressure in the bubble-lower vessel section starts going
down, the pressure in the other section will continue to go up for a little while.

Equilibrium, however, will only set at the moment when the "rear” end of the
bubble reaches point W (see Fig. 19a).

Proof: The sum of the water levels difference and the length of the straight
section in the upper vessel i.e. §h + x, equals to the length of the other straight

section. It is evident that the column height, i.e. the pressures, are the same and
the system is:indeed in a state of equilibrium.
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2.) Let us assume that the length is shorter than the level difference / < 8h, i.c.
pressure 2, is evidently higher in the bubble-lower section of the hose. When the
bubble floats down in the other section of the siphon both pressures will g0 down,
but due to the straigtness of this section, they will keep dropping always by the

same vaiue.

The pressure difference will therefore not change and the bubble (as well as
the water) will move upwards toward the vessel 2. The movement of the bubbie
in the upward direction need not be considered here, because this would increase
pressure p, by a certain value, but pressure p, would go up by a lower value (due
to the hose curvature), which would cause an increase in the pressure difference,
i.e. the energy of the system. For this reason, the bubble will start going down.

3.) The above gives a definite position of the bubble ends which typifics
a state of equilibrium of a certain kind. By the position of the ends we mean the
height above the water level in appropriate vessel. Tt is therefore evident that
there exists another piace for the position of the bubble end corresponding to ves-
sel 1, which is point W where the same equilibrium is established as in the previ-
ous case. The corresponding length of the bubble is / = #» + h. If we prolong the
bubble by lcngth b, then — in order to recover the equilibrium — the surface levels

will drop by 5 b in both straight sections of the hose. The transport of the water

will cease. ! 2 nr+ Jh.

4.) #r + 6h > 1> 6h. Let us assume that in this case the "rear” end of the bub-
ble will stop in the curve at angel #(see Fig. 19b). We can then apply these rcla-
tionships to the whole length of the hose:

a) according to the individual sections:

=X+ Xr+ x+ oh (1)
b) according to the length of the bubble:
Z=x+ fr+ 1+ h, (2)

(f in radians)

An equilibrium has been reached, which gives a rise t0 h=h,= = h, This
height of the water column in vessel 1 corresponds 1o angle a = 7 - 8

h,=x+ rsin (x - f)

h=x+ rsin (f) (3)
By combining equations (1), (2), (3) we will get the following relationship for 3

2x+ ar+ Sh=x+ fr+ [+ x+ rsin (f)

B+sin (B =(xr+ Sh-1):r ' (4)

We can see that angle £ is not dependent on x, because if the angel changes

then the water column heights change in the same way — and so do the pressures
~ the equilibrium position of the bubble will therefore not change.

IL.B

In the other model example (see Fig. 19¢) the siphon is formed by two straight
sections of the hose.
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1) Let us assume that the surface level difference equals to oh and a, S is the
inclination of the siphon sections toward the vertical axis (see Fig. 19¢). We wi]
now suck in a bubble of the exact legth of /= gh/(sin (90° - 8)= oh/cos (B).
We will place the bubble in this position the upper end of the bubble point W, the
lower end of the bubble surface level of vessel 2. It is then evident that the pres.
sures acting on the bubble are zero. When the bubble moves upwards, then due to
Lhe straightness of section 2, there will be an increase of the pressures which are
caused by the water columns. The increments in pressure will be the same, i.e. the
cquilibrium will not be disturbed. We can deduce then that any position of the
bubble in section is an equilibrium position. Since the bubble is moving from ves-

scl 1 to vessel 2, it will take the first possible position corresponding to the state
equilibrivm: the "rear” end of the bubble will stop at point V.

2) We will suck in a bubble of the length of /< h:cos f. We will place the
bubble in this position: "rear” end of the bubble-point W. Pressure p, is now evi-
dently higher than pressure p, (cf. 1) and the bubble will be set in motion towards
vessel 2. Due to the straightness of section 2, however, there will be no pressure
change and the bubble will "travel” as far as vessel two and the transport of the
water will continue. Here we do not have to consider the movement of the bubble
in the opposite direction, because it would cause an increase of pressure p, and
pressure p, would drop due to the hose bend at point W. This would increase the

pressure difference and the energy of the system would increase. The bubble will
therefore move toward vessel 2.

3) Now all that remains is to solve the problem for ¢+ b2 1> &h: cos B (see

Fig. 19c). After a state of equilibrium sets in, the heights of the water columns in

the individual sections of the siphon must be the same (4). Two equations may be
applied to these heights:

sin{z—-B)=h:(b-(1-x)) (1)
sin(x—-a)=h:(a-x) (2)
h=(h-1+x)cosf (la)
h={a—-x)cos o (2a)

By combining (1) and (2) adjusting equations (1) and (2), we find a relationship
for x:

x=(acosa+ (1-b)cos f): (cos B+ cos a) (3)

By substituting this value into (2a), we get a relationship for the water column
height A:

h=cosaf(a- (acosa+ (1-5b)cos f):(cos B+ cos a)).
The value demonstrates well the position of the bubble in the siphon.

Conclusion:

In the first case, when we pull the hose out from the lower vessel, the same
rule applies, i.e. to ensure continuing transport of the water, we must make sure
that at least a certain quantity of the water in the hose is kept all the time a little
under the surface level of the upper vessel. As regards the other case, i.e. determi-
nation of the ultimate position of the equilibrium state from which the transport
of the water can continue, it is not possible to define a generaly applicable rule,
the problem has to be solved individually for each respective case, taking into
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sccount the shape and the dimensions of the siphon. As a general rule, the posi-
tion of the bubble (if there is any static equilibrium at all) may be determined on
the basis of a zero pressure difference (i.c. the heights) in the individual sections

of the SiphOI'l.

Fig. 19(a-d) Various possible positions of the bubble in the hose

Problem No.12 - Boiling

This problem was solved experimentally as well as Lhcoreﬁcauy.

Experimental part:

We inserted metal balls into a vessel containing water heated to 90 -~ 100°C.
These balls had different radiuses and were heated to temperature 150 - 200°C.
The balls were heated in an electric kiln with a stabilized temperature controlled
by a switch mercury thermometer. The values of evaporation intensity we deter-
mined with the aid of a digilal balance with graduations of 0.01 g. We plotied on
a graph dependence of the measured evaporation intensity (mg/s) on the time.
The evaporation intensity was vniformly decreasing. After about 15 seconds, the
evaporation intensity rapidly increased and within the following 4 seconds it
dropped almost to zero.

Theoretical analysis:

In the theoretical part of the solution, we supposed uniform heat conduction
from the middle to surface of the metal ball, where it's transfered 1o water. The
ball is composed of an infinite number of spheres of negligible width. The aver-
age surface area of the ball is §. The sum of heat that will be transferred to the
liquid was divided into » parts. When the first part of the heat is abstracted, the

temperature of the metal ball goes down, and the next part of the heat O [n is ab-
stracted for a longer time. From the known value of abstracted heat we deter-
mined the mass of evaporated water. Then we derive the theoretical dependence
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