15. Brazil Nut Effect

Markus Helmer

German Team

Problem

When a granular mixture is shaken the larger particles may end up above the smaller ones. Investigate and explain this phenomenon. Under what conditions can the opposite distribution be obtained?

Overview

- Experiments
 - setup
 - dependencies
 - results
- Simulation
 - model
 - results
- Qualititave Explanations for segregation mechanisms

Experimental Setup

dies ist ein Foto / Video des Aufbaus

Dependencies

- Segregation and its direction depending on
 - size, density, material, filling height of particles
 - size, material, form of container
 - used acceleration: sinusoidal, taps, ...
 - environmental conditions: air pressure, humidity

\Rightarrow Restriction to certain parameters necessary

Results

- Very low amplitude \rightarrow nothing happens
- Increasing amplitude → large particles rise slowly
- Eventually segregation
- Increasing amplitude \rightarrow convective cells

Simulation - Model

- Spherical particles
- Different radius and mass
- Rectangular / cuboidal / cylindrical box of infinite height
- At each timestep
 - forces acting upon each particle are evaluated
 - Newtonian equations of motion are solved numerically

Acting Forces

- Gravitation
- Collision forces
 - Collisions occur if distance between center points x
 _i and x
 _j of spheres is smaller than the sum of their radii R_i and R_j:

$$\left|\vec{x}_i - \vec{x}_j\right| < R_i + R_j$$

• Resulting force on colliding particles

$$\vec{F}_{ij} = F_{\rm N}\vec{n}_{ij} + F_{\rm S}\vec{t}_{ij}$$

Forces in Normal Direction

$$F_{\rm N} = \underbrace{k \left(R_i + R_j - |\vec{x}_i - \vec{x}_j| \right)^{1.5}}_{\text{elastic restoration force}} -\underbrace{\gamma_{\rm N} m_{\rm eff}^{1.5} \vec{v}_{\rm rel} \vec{n}_{ij}}_{\text{dissipation force}}$$

where

- *k* Coefficient of proportionality
- $\gamma_{\rm N}$ Normal friction coefficient

$$m_{\mathrm{eff}} = rac{m_i m_j}{m_i + m_i}$$

Forces in Tangential Direction

$$F_{\rm S} = -\gamma_{\rm S} m_{\rm eff}^{1.5} \vec{v}_{\rm rel} \vec{t}_{ij} - \mu F_{\rm N}$$

elastic dissi- Coulomb
pation force friction

where

- $\gamma_{\rm S}$ Shear friction coefficient
- μ Coulomb friction coefficient

$$m_{\mathrm{eff}} = rac{m_i m_j}{m_i + m_i}$$

Simulation Results

- Brazil Nut Effect
- Depending on
 - frequency
 - amplitude
 - radii
 - masses

Percolation

- Shaking opens voids between particles
- Small particles can fill small voids under larger particles
- Large particles need large voids \rightarrow improbable
- Control parameter for percolation to occur: volume (diameter) ratio of species A and B

Convection

- Vibrating plate \rightarrow particles gain energy
- Collsions with other paricles and walls \rightarrow energy loss
- Mean kinetic energy decreases from bottom to top
- Mean kinetic energy low at walls
- Analogy to Rayleigh-Benard-convection
- \Rightarrow convection

Segregation by Convection

- Conditions: high container, walls
- All particles rise in center
- Particles sink in narrow stream near wall
- Large particles cannot sink
- \Rightarrow Segregation

Thermal Segregation

- Large particles loose less energy in collisions than small particles
- Large particle faster
- Mean free volume for large particle increases
- Density around large particles decreases
- Large particles rise
- \Rightarrow Segregation

Reverse Brazil Nut Effect

- Thermal segregation is due to the large particles loosing less energy per collision
 → excavated particles → loose equally much or more energy
 → sink
- Particles fluidify if threshold acceleration is reached
 - \rightarrow large dense particles sink because of gravitation

15. Brazil Nut Effect

Markus Helmer

German Team