16. Small Fields

Construct a device based on a compass needle to measure the Earth’s Magnetic Field.

By Aron Alexandre Heleodoro
The importance

- Superficial
- Exterior Field (Van Allen Belt)

How to measure it

- Using the magnetic needle deviation
- Using the charge deviation
- Using a rotating coil
Vectorial sum of two fields
- #1: Earth’s Magnetic Field
- #2: A field of known intensity and direction

Biot-Savart Law
- Intensity and direction the magnetic field in a coil
- Linear relation between the current in a coil and the tangent of the deflection angle.

Mathematical Model

Practice
- Electric Circuit
- Data acquisition (current and deflection angle)
- Linear regression
- Final value of the Earth’s magnetic field
16 - Small Fields

The Method

1. Measure the current
2. B_{coil}
3. Biot-Savart Law
4. $\text{tg}(\theta)$
5. Measure the angle θ

Process:
- Graphic
- Linear Regression
- Inclination
- B_{Earth}^H
- B_{Earth}
16- Small Fields

Development - Theory

- Deviation
- Biot-Savart Law

\[
\alpha = \cos B
\]

\[
\hat{B}_{\text{Earth}} \hat{r} = \mu I \theta B_{\text{Earth}} t g \theta
\]

\[
\left(90. \frac{\mu_0}{2r}\right) I = \left| B_{\text{Earth}} \right| t g \theta
\]

\[
\left| B_{\text{Earth}} \right| = \frac{B_{\text{Earth}}}{\cos \alpha}
\]

\[
B_{\text{TOT}} = B_{\text{EV}} + B_{\text{EH}}
\]

\[
\alpha
\]
Materials

Set up

Collected Data
16- Small Fields
Development - Experiment

- Photos
- Video
Table of Data (increase of current)

<table>
<thead>
<tr>
<th>Current (I) [mA]</th>
<th>Angle (θ) [$^\circ$]</th>
<th>$\text{tg } \theta$</th>
<th>Magnetic Field of the Coil (B_{coil}) [μT]</th>
<th>Horizontal component of the Earth's Magnetic Field (B_{EarthH}) [μT]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,6</td>
<td>5</td>
<td>0,087</td>
<td>1,645</td>
<td>18,803</td>
</tr>
<tr>
<td>2,8</td>
<td>10</td>
<td>0,176</td>
<td>2,878</td>
<td>16,326</td>
</tr>
<tr>
<td>4,8</td>
<td>15</td>
<td>0,268</td>
<td>4,935</td>
<td>18,418</td>
</tr>
<tr>
<td>8,2</td>
<td>20</td>
<td>0,364</td>
<td>8,430</td>
<td>23,163</td>
</tr>
<tr>
<td>12,0</td>
<td>25</td>
<td>0,466</td>
<td>12,337</td>
<td>26,458</td>
</tr>
<tr>
<td>15,0</td>
<td>30</td>
<td>0,577</td>
<td>15,422</td>
<td>26,712</td>
</tr>
<tr>
<td>17,0</td>
<td>35</td>
<td>0,700</td>
<td>17,478</td>
<td>24,962</td>
</tr>
<tr>
<td>19,0</td>
<td>40</td>
<td>0,839</td>
<td>19,534</td>
<td>23,281</td>
</tr>
<tr>
<td>21,0</td>
<td>45</td>
<td>1,000</td>
<td>21,591</td>
<td>21,591</td>
</tr>
<tr>
<td>25,0</td>
<td>50</td>
<td>1,192</td>
<td>27,703</td>
<td>21,568</td>
</tr>
<tr>
<td>29,0</td>
<td>55</td>
<td>1,428</td>
<td>29,816</td>
<td>20,877</td>
</tr>
<tr>
<td>32,0</td>
<td>60</td>
<td>1,732</td>
<td>32,901</td>
<td>18,995</td>
</tr>
</tbody>
</table>
16- Small Fields

Experiment - Error Sources

- Other Magnetic Sources and interference in the Net Field
- The Geometry of the model
 - Magnetic needle is an extensive body
 - Geometric center of the coil
- Imprecisions in the measurement of the angle and current
- Friction in the magnetic needle
- Parallaxes
Comparison with a theoretical value

\[\left| \mathbf{B}_{ET} \right| = 23.18 \, \mu T \]
\[\left| \mathbf{B}_{ET} \right| = 23 \, \mu T \]
\[\left| \mathbf{B}_{ET} \right| = 24.46 \, \mu T \]

Good theoretical model