Explanation

• We considered the granular mixture as a system of two different fluids
• We demonstrate that this approach is adequate
• The denser component sinks to the bottom, in analogy with real fluids
• Larger particle behaviour:
 • If the larger particles have lower density, they will emerge
 • If they are denser, they will sink
Experiment

1. **Intruder ball**

 - Measured quantity: time of emerging/sinking of the intruder
 - Parameters:
 - Frequency
 - Amplitude
 - Ratio of intruder and surrounding balls densities
 - Volume of intruder
Used intruders

<table>
<thead>
<tr>
<th>material</th>
<th>mass [g]</th>
<th>density [kg/m³]</th>
<th>diameter [cm]</th>
<th>volume [cm³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>lead</td>
<td>86,3</td>
<td>10550</td>
<td>25</td>
<td>8,2</td>
</tr>
<tr>
<td>wood 1</td>
<td>3,62</td>
<td>864,2</td>
<td>20</td>
<td>4,2</td>
</tr>
<tr>
<td>wood 2</td>
<td>0,42</td>
<td>464</td>
<td>12</td>
<td>0,905</td>
</tr>
<tr>
<td>plastic</td>
<td>0,26</td>
<td>969,8</td>
<td>8</td>
<td>0,268</td>
</tr>
<tr>
<td>styropor 1</td>
<td>1,34</td>
<td>21,7</td>
<td>49</td>
<td>61,6</td>
</tr>
<tr>
<td>styropor 2</td>
<td>0,32</td>
<td>31</td>
<td>27</td>
<td>10,3</td>
</tr>
<tr>
<td>glass 1</td>
<td>14,07</td>
<td>2523,7</td>
<td>22</td>
<td>5,6</td>
</tr>
<tr>
<td>glass 2</td>
<td>5,1</td>
<td>2378</td>
<td>16</td>
<td>2,14</td>
</tr>
</tbody>
</table>
2. Binary mixtures

• Main goal – obtain transition from brazil nut effect to reverse effect

• Parameters:
 • Frequency
 • Volume ratios of the constituents
 • Density ratios of the constituents
 • Shape of constituents
Apparatus

1. Higher amplitude apparatus

- Electric motor
- Shaft
- Eccenter

\[A = 13 \text{ mm} \]
Measurements

1. Intruder ball

- Conditions for the occurrence of brazil nut effect in our conditions:
 - Frequency above 8.4 Hz
 - Ratio of intruder and surrounding balls densities under ~0.6 at 8.4 Hz
- The emerging balls were:
Styrofoam 2
Intruder balls - summary

<table>
<thead>
<tr>
<th>material</th>
<th>density ratio to surrounding balls</th>
<th>behaviour</th>
</tr>
</thead>
<tbody>
<tr>
<td>lead</td>
<td>13.19</td>
<td>sinks</td>
</tr>
<tr>
<td>wood 1</td>
<td>1.08</td>
<td>sinks</td>
</tr>
<tr>
<td>wood 2</td>
<td>0.58</td>
<td>floats</td>
</tr>
<tr>
<td>plastic</td>
<td>1.21</td>
<td>sinks</td>
</tr>
<tr>
<td>styropor 1</td>
<td>0.027</td>
<td>floats</td>
</tr>
<tr>
<td>styropor 2</td>
<td>0.039</td>
<td>floats</td>
</tr>
<tr>
<td>glass 1</td>
<td>3.15</td>
<td>sinks</td>
</tr>
<tr>
<td>glass 2</td>
<td>2.97</td>
<td>sinks</td>
</tr>
</tbody>
</table>
2. **Binary mixtures**

- Several mixtures involved

- The reverse effect occurs for heavier constituents of mixture
Theoretical approach

• Several explaining models have been proposed for the brazil nut effect:

 • Percolation (*T. Rosato et al., Phys. Rev. Lett. 58*)

 • Air – driven segregation

 • We will discuss the fluid model in detail because of its simplicity and experimental proof
The fluid model

Main assumptions:

- The granular system may be regarded as a dense gas with three phases:

1. Solid phase

 The balls are so near that they can’t interchange positions but just oscillate on the same place – analogous to solids
2. Liquid phase
The balls interchange places, but do not move vigorously – analogous to liquids

3. Gaseous phase
The balls move fast and collide at random – analogous to gases
As such, the "granular gas" can be described by a Fermi – Dirac distribution function:

\[
\phi(z) = \frac{1}{1 + e^{\frac{mgd}{T}(z - \eta)}}
\]

- \(\phi(z) \) - Probability of finding a ball at height \(z \)
- \(d \) - ball diameter
- \(m \) - ball mass
- \(z \) - normalized height
- \(T \) - equivalent temperature (function of frequency)
- \(\eta \) - number of layers at 0 deg. Eq.
• This distribution is experimentally substantiated:

Distribution

- experimental data
- theoretical curve

Normalized height (number of row)
• The granular gas density can be defined as

\[\rho_g = \rho_i \psi \]

\(\rho_g \) – gas density
\(\rho_i \) – density of one ball
\(\psi \) – packing density, defined as \(\psi = \frac{\sum_{i=1}^{N} V_i}{L} \)
\(L \) – the volume taken up by the balls

• In analogy to a fluid we define the buoyancy force:

\[F_u = V \rho_g \psi g \]

\(V \) – volume of intruder
Condition for brazil nut effect

- For intruder balls:
 \[
 \frac{\rho_{\text{int}}}{\rho_i} \geq \overline{\psi}
 \]
 - \(\rho_{\text{int}}\) – intruder density
 - \(\rho_i\) – surrounding ball density
 - \(\psi\) – mean packing density

- For binary mixtures:
 \[
 \frac{\rho_1}{\rho_2} \geq \frac{\overline{\psi_1}}{\overline{\psi_2}}
 \]
 - \(\rho_i\) – densities of mixture constituents
 - \(\psi_i\) – mean packing densities of constituents