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Popping body
A body is submerged in water. After release it will pop out of the water.
How does the height of the pop above the water surface depend on the initial conditions (depth
and other parameters)?

Abstract

The nonmonotone dependence of the height of a body popping out of the liquid on the depth
is investigated. It is shown that if the motion begins far from the liquid surface the height
reaches an asymptotic value, which is determined by the geometry of a body. In opposite case
of small depth the hydrodynamic resistance force is non stationary and can be neglected. The
linear dependence of the height of popping on the depth near the surface is explained by the
attached mass effect. The theoretical results are in good agreement with the experimental
ones without any fitting parameters.
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2: POPPING BODY

1 Introduction

In the problem proposed one deals with very complicated system. It is a body moving within a
liquid under the gravity force. It is pure hydrodynamic problem. As a rule such problems can not
be solved rigorously because of essential non-linearity arisen from the mutual influence of the liquid
flow and motion of a body. Moreover the considered problem is assumed to be non stationary.
In such a situation we start the solution of the problem with an experiment. We tried to find
the dependence of the popping height on the depth of submerging. The experimentally obtained
results are shown on figure 1 by crosses. -
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Figure 1: The dependence of the height of popping on the depth of submerging (experimental and
theoretical, R = 0.01 m, C, = 0.4)

T'his dependence has nonmonotone character although, at first sight, it seems that the deeper onc
submerges a body, the higher it pops up over the surface.

2 ldeal liquid

Let us explain this dependence theoretically. First to simplify the geometry of the problem we
restricted the consideration by spherical shape of a body. To simplify the consideration we assume
that the liquid is ideal (viscosity force can be neglected). It is clear that the velocity of the
submerging ball in an ideal (v — 0, (v - viscosity coefficient)) fluid approaches stationary value at
t — oo. This velocity can be calculated by the formula:

BpR
o0 — 1
oo = | 2 8
where R is the radius of the ball, C, the hydrodynamic resistance coefficient, for a boddy of

spherical shape it can be approximated by the value C, = 0.3-0.4, p is the density of a liquid. It
can be easily obtained by the equality of hydrodynamic resistance and buoyant forces:

1
pgvV = 5195@3@

S = 1R
4
V = gﬂ'RS

3 Height of the popping

T'he height of popping calculated with the help of formula (1) reads as

V2, 1R

=30 =00 (2)
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For R = 0.0lm, p = 1000%% it 1s about 3—4cm. This value is shown on figure 1 by dotted line.
This value agrees with experimental one but slightly greater. The difference can be explained by
influence of viscosity of the real fluid (water), which decreases the momentum together with pure

hydrodynamic resistance.

4 Small submerging

Now let us consider the dependence of height at small (several diameters of a ball or less) depths
of submerging. In this case the time of acceleration is small enough and the resistance force is
not stationary, because there is not enough time to stabilize the motion. Hence the change of the
momentum of the ball caused by this force can be neglected. So we can do not take it into account.
Therefore, to get the acceleration we should write down the second NEWTON’S law with buoyant

force only:
m*a = F4 (3)

Here we take into account the attached mass of the water, which is determined by the following
expression:

1
m* = 5;)’02 - (4)

where is p the density of water and V' the volume of the ball. In (3) we neglected the mass of
the ball m assuming m < m* (e.g. ping-pong ball), that is why we did not take into account the
eravity force of the ball. The buoyant force reads as:

Fa = pgV ()
From (3) and (5) we get:
a=29 ' (6)

The velocity of the ball can be found immediately as:
v = V2ad (7)

where d is the depth of submerging.
The height of popping corresponding to (7) is given by simple expression:

H, = 2d (8)

This dependence is shown on figure 1: Hy on depth d. The agreement is satisfactory at least for
small (d > R) depth of submerging. The theoretical line goes above the experimental one. Indeed,
the formula (8) giving characteristic linear dependence is an upper estimation since we neglected
the wave resistance caused by the transmission of the momentum to liquid and thus changing the
surface profile. This effect leads to deviation of (8) from the real behavior. The height of popping
approaches the maximal value. Then it decreases and soon becomes constant. It is very difficult
to describe this crossover interval of depths in rigorous theoretical way as has been said above.

5 Conclusions

Nevertheless, the existence of the depth, which gives the highest popping, follows from the com-
parison of numerical estimations for (2) and (8). Indeed, for

2R
d>d = 2 2
-4 =30, (9)
the inequality
Hy(d) > Hy (10)

is fulfilled, therefore there must be the maximum for the depth dependence of the height of popping.
The locus of the optimal depth as follows from experiments is about 4R.
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