2. Problem • 2: Shades

Solution of Korea

Problem • 2: Shades

Cho Han Suk, Incheon Science High School, 543-3 Unseo-dong Joong-gu Incheon Republic of Korea, cho1suk@hanmail.net

The Problem:
If small non-transparent objects are illuminated with light, patterns in the shadows are observed. What information can be obtained about these objects using these patterns?

Abstract
This problem told us to answer “What information can be obtained with illuminating small non-transparent objects with light”. There are many theories and equations related to this phenomenon. Representative ones are Fresnel and Fraunhofer equations. These equations explain a relationship between obstacles, light source which illuminates obstacles, and screen where diffraction patterns appear. Also, using Babinet’s principle which says that diffraction patterns made by two complementary gratings are same, I applied those equations to get information of small non-transparent objects. In the experiment, at first, I simply set a device and checked if experimental results satisfy the equations. Secondly, I checked if there is any difference between diffraction patterns made by scattered and non-scattered obstacles. I found there are differences when I put obstacles randomly or regularly. I found also found that shapes of small objects also affects the results. Finally, I applied these result to real small non-transparent objects. With seeing diffraction patterns and measuring distances between center of diffraction pattern and minima rings of it, applying results to Fresnel and Fraunhofer equations, I could get several information of small non-transparent objects.

1. Theoretical Backgrounds
1.1. Fresnel diffraction and Fraunhofer diffraction

Fresnel diffraction supposes distances between light source, obstacles and screen are infinite. Also it treats light waves as spherical waves. Fraunhofer diffraction supposes distances between those are finite. It treats light waves as plane waves. Under these supposed conditions, we can make equations related to diffraction. Following is deriving process of Fresnel diffraction equation.

1.2. Derivation of Fraunhofer diffraction equation

Amplitude of diffracted waves in case of Fresnel diffraction and Fraunhofer is defined as below

\[U \propto \int e^{i(kr+kr')} \, d\Omega \]

\[I \propto |U|^2 \]

(U : amplitude, I : intensity, r : distance between detection point and aperture, r' : distance between source and aperture)

As we ignore the effect of spherical wave, there only left factors related with plane waves as following

\[U \propto \int e^{ikr} \, dA \]
From now on, I will use this relation to derive diffraction equation of each obstacle.

1.2.1. In case of diffraction patterns made by slits

The situation is as following image.

In case of slits, amplitude of diffracted waves is as below.

\[
U \propto \int_{-\frac{b}{2}}^{\frac{b}{2}} e^{iky\sin \theta} \, dy = e^{\frac{ikb}{2}\sin \theta} - e^{-\frac{ikb}{2}\sin \theta} \quad \frac{ik}{\sin \theta}
\]

\[
\therefore I = I_0 \left[\frac{b}{\beta}\sin \beta \right]^2 \quad \beta = \frac{1}{2} kb \sin \theta
\]

Therefore, the zeros of the diffraction pattern appear when

\[
n\pi = \beta \quad (\therefore I = 0) \quad \frac{kb\sin \theta}{2} = \frac{\pi b\sin \theta}{\lambda} \quad \left(k = \frac{2\pi}{\lambda} \right)
\]

\[
\therefore b \sin \theta = n\lambda
\]

\[
\therefore n = \frac{x}{bL} (n = 1, 2, 3, \ldots)
\]

1.2.2. In case of diffraction pattern made by circular aperture

The situation is as following image, a circular obstacle with radius of "a".
Intensity of diffraction pattern is,

\[I \propto \left[\int_{-a}^{a} \int_{\sqrt{a^2 - y^2}} e^{iky \sin \theta} \, dx \, dy \right]^2 \]

\[I = I_0 \left(2 \frac{J_1(\beta)}{\beta} \right)^2 \]

\[\therefore \frac{\lambda}{2a} = \frac{r}{L} \]

\[(m = 1.220, 2.233, 3.238...) \]

2. Experiment

2.1. Experiment no.1

In this experiment, I made simple diffraction patterns with using apertures and opaque (slits, circle, triangle and square). Also I compared diffraction patterns from various opaque.

2.1.1. Experimental set up
2.1.2. Experimental results

2.1.2.1. Results with slits and wires

![Slits and Wire Images](image1.png)

2.1.2.2. Results with triangular aperture and opaque

![Triangular Aperture and Opaque Images](image2.png)
2.1.2.3. Results with square aperture and opaque

2.1.2.4. Results with circular aperture and opaque

2.1.3. Babinet’s principle

Babinet’s principle says that diffraction patterns which made by two complementary gratings are same. Upper results show the principle in visual.

\[
\begin{align*}
\text{Amplitude} \\
U_1 + U_2 &= 0 \\
U_1 &= -U_2 \\
|U_1|^2 &= |U_2|^2 \\
I_1 &= I_2
\end{align*}
\]
2.2. Experiment no.2

In this experiment, I arranged small opaques randomly and regularly. Then, I illuminated light, observed diffraction patterns, and compared results.

2.2.1. Experimental set up

2.2.2. Experimental results

2.2.2.1. Results with regularly arranged square and circular opaques
2.2.2.2. Results with randomly arranged square and circular opaques

![Square opaques](image)

![Circular opaques](image)

2.3 Experiment no.3

In this experiment, I used blood corpuscles, pine flowerpots and fox’s wool. With these objects, I illuminated light and tried to find information related to them. Also I used diffraction equation to measure sizes of small objects as follows.

- Minima on Diffraction pattern

\[
\sin \theta = \frac{\lambda}{m} \quad (m = 1.220, 2.233, 3.238...)
\]

\(\text{m is defined with Bessel function} \)

\[
\therefore \frac{\lambda}{a} = \frac{r}{x} \quad (\text{when}, \theta << 1)
\]

I measured values of \(x, r \) and theta and applied these values into upper equation. Then I could get values of \(a \). I put 1.22 as a value of \(m \) when \(r \) was distance between center and 1\(^{st}\) minimum and 2.233 when \(r \) was distance between center and 2\(^{nd}\) minimum.
Upper image explains why diffraction patterns made by scattered particles and non scattered particles are same. It works only when light source and eyes are on same axis. Then path lengths of light beam toward eyes are same and it makes the patterns same. So I could say that the pattern made by a particle is same as the pattern made by several scattered particles. It enabled me to use diffraction equation to get sizes of small objects.

2.3.1. Experimental devices and set up

< Mercury light source with circular aperture >
He/Ne Laser

Cardboard with a small aperture

A : Light Source
B : Where diffraction pattern appears
C : He/Ne Laser
D : Sample enclosed in the slide
E : Eye

Experimental Set Up
2.3.2. Experimental samples

Experimental samples: blood corpuscles, pine flowerpot, fox’s wools

2.3.3. Image of diffraction pattern made by mercury light source

Diffraction pattern made by Hg light source

2.3.4. Experimental set up

2.3.4.1. Experiment no.3-1
In this experiment, I used green filtered mercury light source whose wavelength is 546nm. I observed patterns which appeared on screen. Then, I measured distances between center of diffraction pattern and each minima with He/Ne laser (I marked points where minima exist with laser, marked with pen, and measured distances by using a ruler).

2.3.4.1.1. Experimental results – image

Diffraction pattern made by green filtered Hg light source
2.3.4.1.2. Experimental results

<table>
<thead>
<tr>
<th>Distance</th>
<th>1m</th>
<th>2m</th>
<th>3m</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pine flowerpot</td>
<td>R1</td>
<td>1.6cm</td>
<td>3.2cm</td>
<td>4.8cm</td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>3cm</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Blood corpuscles</td>
<td>R1</td>
<td>9.2cm</td>
<td>18cm</td>
<td>28.5cm</td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fox’s wool</td>
<td>R1</td>
<td>3.2cm</td>
<td>7cm</td>
<td>10.5cm</td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

< R1 : distance between center of diffraction patterns and 1st minimum, R2 : distance between center of diffraction patterns and 2nd minimum >

2.3.4.2. Experiment no.3-2
In this experiment, I used microscope to measure real sizes of small objects. I set microscope on slide glasses for measurement. I tried 7 times each, calculated average values and compared with results of experiment no.3-1.

2.3.4.2.1. Microscopic photos of samples

< Microscopic photo of fox’s wools with micrometer >

< Microscopic photo of blood corpuscles >
2.3.4.2.2. Experimental results

<table>
<thead>
<tr>
<th>Trials</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pine</td>
<td>38</td>
<td>40</td>
<td>46</td>
<td>50</td>
<td>41</td>
<td>42</td>
<td>44</td>
<td>43</td>
</tr>
<tr>
<td>Blood</td>
<td>6.4</td>
<td>7.2</td>
<td>8.0</td>
<td>6.8</td>
<td>7.2</td>
<td>6.4</td>
<td>6.6</td>
<td>6.9</td>
</tr>
<tr>
<td>Fox’s wool</td>
<td>19</td>
<td>18</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>18</td>
<td>19.0</td>
</tr>
</tbody>
</table>

Dimension: μm

2.4. Comparison between results

As the graph shown above, results between experiment 3-1 and 3-2 are almost same within error range. So we can say that the accuracy of measurement using light is pretty high enough to be trusted. Also it guaranteed the theory which says that diffraction patterns made by scattered particles and a same particle are same when light source and eyes are on same axis.

3. Conclusion

The problem “Shade” wanted us to find out information of small objects by using patterns in the shadow when we illuminate light through small objects. In my experiment, I interpreted the patterns as diffraction patterns by illuminating light through particles. The equations I derived in the theoretical part helped me to find out real sizes of small objects with diffraction pattern. Critical factors of this measurement were distance between particles (eyes) and screen and center of diffraction pattern and minima. Actually, in real experiment, I could only see 1st and 2nd minima because upper 2nd minima were too dim to observe. Also I was sure that the accuracy of this measurement is enough to be believed by measuring real values by using microscopes. Values gained with experiment 3-1 and 3-2 were almost same within error range.

In experiment no.1 and no.2, I tried to find simple diffraction patterns and tested the accuracy of equations. Also I found that diffraction patterns made by regularly arranged particles depend on their arrangement (In my experiment, I arranged them in lines so the patterns appeared rectangular). In case of randomly arranged particles, their diffraction patterns appeared to be circular shapes regardless of their shapes.

In conclusion, information I could get from patterns were shapes of objects, sizes of objects and state of arrangement of objects.

4. References
[1] Introduction to modern optics, by Fowles.
[2] Optics, by Hecht