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7. Problem Nel0: Inverted pendulum

7.1. Solution of Korea

Problem Ne10: Inverted pendulum

Park, Hyeongsu, Korean Minjok Leadership Academy
1334 Sosa Anheung Hoengsung Gangwon, Korea 225-823

The Problem:

It is possible to stabilize an inverted pendulum It is even possible to stabilize an inverted
multiple pendulum /one pendulum the top of the other/. Demonstrate the stabilization and
determine on which parameters this depends.

This paper studies comprehensively about the methods of stabilizing an inverted pendulum.
“An inverted pendulum is a free hung pendulum which is upright, and just like an ordinary
pendulum, it naturally falls downward because of gravity. Thus, the inverted pendulum
system is inherently unstable. In order to keep it upright, or stabilize the system, one needs to
manipulate it, either vertically or horizontally.
Many stabilizing methods have been developed. In 2-Dimesional system, an inverted
-pendulum can be stabilized thorough either vertical or horizontal oscillation with certain
frequency. In 3-Dimension, rotational arms or free robot arms are used for stabilization. For
‘algorithm, a controller using feedback system or simple oscillation both work to keep the
‘pendulum upright, though processes or extents of stability are different from each other.

This paper first proposes theoretical background for all the cases. Then, the experiments
focus on horizontal oscillation and delve into the various characteristics and factors of
stabilization pattern.
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A. Physical Modeling for the Inverted Pendulum

Mechanics of the inverted pendulum is not different from that of the ordinary pendulum. It
consists of a rod and a pivot. When you draw a force diagram of inverted pendulum system,
it’s shown as Figure 1. As seen in the diagram, force i1s applied to the pendulum’s pivot
(base).

Let m be the mass of a rod, P(Xg, yp) coordination of the pivot, CM(x,y) coordination of the
center of mass, 1 a distance from P to CM.

Two basic motion equations for the pendulum system are

mi=F,, mj=F,~mg )
and
[.0=IF sm@-IF_cosf (2)

Where Ic is the moment of inertia of the rod with a pivot on CM.

>
X

Figure 1 Force Diagram of the Inverted Pendulum

Substitute Equation (1) for Fx and Fy in Equation (2), then we obtain

If§=ml(jﬁ+g)sin9—mbc'cosﬁ (3)
Then, from relationship between the coordinate of P and that of CM,

x=x,+Isinf,y=y, +Ilcos@ (4)
Thus,

¥=1X%,+10cos@—-16"sin8,

. _ :
Yy =¥, —18sin@—-16*cos@ (5)

Substitute Equation (5) for ¥ and ¥ in Equation (3), then the equation becomes

S
—L-0+ X, cos8—(¥,+g)sind =0 (6)
mL

Where [, =1, +ml > is the moment of inertia of the rod with a pivot on P. Equation (6) is

a universal motion equation for the inverted pendulum, which can also be applied to an
ordinary pendulum. This equation will be used in simulation which will be later explained. In
the next chapter, we will use this equation to find stabilizing methods of the pendulum,
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B.Stabilizing Methods of the Inverted Pendulum

An inverted pendulum can be stabilized in mamly two ways: simple oscillation and
feedback control system. The pendulum with oscillating base at certain frequency can stay
upright without falling down. With a control system, the pendulum’s movement is minutely
manipulated by the machine to keep 1t upright.

i) Oscillation

Oscillation is a possible method for stabilizing the inverted pendulum. Three kinds of
oscillation are possible : oscillating vertically, oscillating honzontally, and rotating it. (Blitzer

1965)
a) The vertically driven pendulum

The inverted pendulum can be stabilized by moving it up and down at certain
frequency. Mathematically,

x, =0, y,=Acosax (7)
Then, Equation (6) becomes

_ﬁl..g+(Aa)2 cosax — g)sind =0 (8)
m

b)The pendulum driven in two dimensions

Here, x, = Bcos(wt+®), y, =Acosax . Equation (6) becomes

I .
—‘:'—ZQ—B.*::)"'2 cos(w't + D)cosf+ (Aw’ cosax —g)sinf=0 (9
m

¢) The rotating pendulum

The rotating pendulum is the special subcase for the case two, where
B=A, w=a', ®=-r/2.Inother words, X, = Asina¥, y,=Acosar. Then,
Equation (6) becomes

I .
—‘-”;9+Aa}25in(9—at)—gsin9=0 - (10)
m :

d)The pendulum driven horizontally

In this case, X, = Acosax, v, =0

I .
;%Q—szcosax—gsinﬁzo (11
1}

For small oscillation, & << 1, the angle range where the inverted pendulum can be
stabilized, Equation (11) is simplified into
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26— A’ cosax — gl =0 (12)
ml |
8—~am,’0 = Dcosax (13)
mel mlw’ A
where woz z_&r D = |
IP [P

: : 2, _
In this equation @J, is remarkable because it i1s an angular frequency of the normal

pendulum. Equation (13) is a linear differential equation, and the solution for this differential
equation in terms of theta is

& =ae™ +be™ choswz (14)
0’ +a,
a=l[90+-9°+ 2D -]
2 @, o +a,
1. 6. D (1>
b=5[9{} a)ﬂ +a)2+m2]
0 0

where the angular displacement and the angular velocity of the inverted pendulum at

t=01is &, and G, respectively.

In order to make the pendulum oscillate, the exponentially increasing term, or the

exponential term with a positive exponent, should be eliminated. Thus, a should be equal to
Zero, or

: D
O ==, —y———=—Ea, (16)
W+,
D
where £ = 90 + > 2
W+ ),
Then, the final solution for theta becomes
- Dcosat
g=Ee™ — (17)
> 2
O+,
When t approaches to infinity, theta converges to
g Dcosax
= (18)
o'+,

To conclude, when the pendulum’s pivot oscillates in X, = Acosa¥, y, =0, itcan be

Dcosar

stabilized with & = PRI Although theta does not converge into one value, 1t does
0

keep upright while oscillating constantly. The experiments, which will be explained later,
focus on the relationship between xg and theta.

78



ii) Feedback Control system,

Another method to stabilize the inverted pendulum 1s using feedback control system.
Feedback control system is the process in which the movement of the pendulum’s pivot is
continuously fed back based on the pendulum’s physical condition in order to keep the
pendulum upright. For example, at one moment, when the pendulum leans to the right, the
base moves fast to the right so that the pendulum becomes upright. Still, the base should move

in a

Figure 2 Fundamentals of how the inverted pendulum is stabilized
Purple amrows indicate the direction toward which the

inverted pendulum should move when it is leaned as
shown above.

b

certain force because either too fast motion or too slow motion fails the stabilization. When it
starts to lean to the left, the pendulum’s base moves left to make 1t upright again.

In definition, feedback control system monitors certain output of the system and
manipulates its inputs to keep the output near to desired value. As seen in Figure 3, it is also
“called closed loop control system because the output affects the input which again produces
-the next output, repeating the cycle. It has several advantages over an open-loop controller it
can quickly respond to the possible disturbances or uncertainties and keep the pendulum
stabilized constantly.

In the closed loop controller, the desired output is called the reference. Difference between
‘the reference and the current output is the error. The objective of the feedback control system
“1s making it zero by manipulating inputs of the system. The diagram for feedback control
system is shown as below.

In the case of the inverted pendulum, x, the position of the inverted pendulum, and theta, an
angle between the rod and the perpendicular line, are outputs, Desired behavior, or reference,
is theta = 0; we want to keep it upright. Their values are measured by instruments and put into
the controller to calculate an input. The input is the force applied to the base of the pendulum,
through which we manipulate its movement. However, the disturbance inputs, such as
mechanical frictions, also involves in the motion of the inverted pendulum (Process), along
‘with the input from the controller. Then, x and theta change, and these outputs again are
measured and put into controller, completing one revolution of a closed-loop control system.
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Closed-Loop (ak.a FEEDBACK)
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Open Loop Control System
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Figure 3 Comparison between Open Loop Control System and Closed Loop
Control System' |

Feedback control system differs from open loop system because it measures
the output and feedback it to the controller. OQutput determines the value of
the next output.

Among many Kinds of controllers, a PID controller 1s a common feedback loop system.
PID stands for Proportional, Integral, and Derivative. As the name implies, the input of the
system 18 determined by three vanations of the output’s value; the error (Proportional),
integral value of the error (Integral), derivative value of the error (Derivative). The equation
for PID controller 1s shown as below.

Output=P+1+ D

de (19)
=K, e+K, J.e-dt—l-}

By o o P gyt Ao e P ek )

o e e e ey e ey Ry T iy Ry T T

PRI ETERLL At T T )

Figure 4 Diagram for PID Controller”
PID controller uses proportional gain, integral gain, and derivative gain of the error
in order to determine the value of output which can make the error zero

This equation 1s needed to be analyzed in each component in physical points of view. In the
inverted pendulum system, the error signifies how much the pendulum leans.

' http://www.ic-tech.com/Fuzzy%20Logic/
(Diagram 1: open 2: general 3. specified)
2 http://www.brewerscience.com/products/cee/technical/ceepid/
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a) Proportional component

The error 1s multiplied by K, and added to the controlled output. For example, for a heater,
a controller with a proportional band of 10 °C and a setpoint of 20 °C would have an output of
100% at 10 °C, 50% at 15 °C and 10% at 19 °C.?

In the pendulum system, when the rod leans more, the increased theta increases the sum of
output. The result is that more force is applied to the pendulum’s base. Note that when the
error 18 zero, a proportional controller's output is zero. |

b) Integral component

Integral component signifies the average error during pendulum’s movement. Integral
movement extenuates too fast response from P and D components. From balance between I
component and P/D component, the PID controller determines the patterns of stabilization.

¢) Derivative component

Derivative of the error, or theta, is an angular velocity omega of the pendulum. It signifies
how fast the pendulum is falling. The faster it falls, the more the force applied to it should be.

Each component contributes differently to the stabilization. Increase in proportional
coefficient causes fast response, but it causes overshoots and steady state errors. Overshoots
mean unnecessarily overt reaction. The highly responsive pendulum exerts too much force
that the pendulum goes over the perpendicular line and fall down out of control. Also, steady
state error is an error which is not removed by the controller. Bad controllers don’t make error
zero, and the value the error converges is steady state error. The integral component has a
force which eliminates this steady state error. Although large value of integral gain may make
oscillations even larger and make the system unstable, reducing the error improves the
accuracy of the system. Lastly, derivative component also contributes to fast reaction and,
~more importantly, provides a dampening effect to eliminate oscillation and overshoots. In the
inverted pendulum system, it provides an overall stability to it.
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Figure 3 P Control, PI Control, PID Control (from top to bottom)’
P component is basic measure of the control system, | component eliminates

steady state error, and D component extenuates oscillation.

Since each component has its good and bad points, one should combine the three in order

to make the best stabilization of the pendulum. Finding ideal PID coefficients will be later
explained in Discussion section.

iii) Difference between the two methods.

Both oscillation and feedback system can stabilize the inverted pendulum. However, their
characteristics are different each other. In their mechanisms, simple oscillation 1s a kind of
open-loop controller, whose input is fixed at any time. In contrast, feedback system is a
complicated system whose input continuously changes depending on the pendulum’s physical
condition. As a result, it’s unable to exactly predict the pendulum’s motion.

The differences in physical complexity also determine the differences in the controlling
device. Oscillating the pendulum needs a very simple machine such as a robot arm or a
speaker (which makes very minute oscillations), but to realize feedback system needs an
advanced electrical device which can perform differentiation and integration, and simulate
mathematical modeling. |

Nevertheless, feedback system is not an inefficient controller. Rather, the opposite 1s
true. Complexity of the PID controller enables very flexible control compared to oscillation.
In a strict sense, oscillating imperfectly stabilizes the pendulum because it doesn’t make the
rod stand upright but oscillate continuously. However, PID controller can vary the stabilizing
movement by manipulating the values of P, I, D gains. In one case, one can make the

stabilized pendulum oscillating precariously. In the other, one can make it exactly upright and
not moving a bit,

Table 1 Comparison between oscillation and feed back control system

Cost Instruments Complexity Flexibility
Oscillation Less Simple(speaker) @ Can be solved Only one  can
with a clear-cut stabilize or not.
motion equation
Feedback More Complex Nonlinear Can vary the pattern
System (@a device with Need to be of stabilization
complicated arithmetic familiar with
calculation) control theory

* Cuthbert Nyack Control (http://controlcan.homestead.com/files/acontrol/con2pid.htm)
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C. Apparatus

Realizing the control system needs computer program which can simultaneously check the
pendulum’s conditions and calculate.

The inverted pendulum moves by the cart attached to it. The cart is fixed on a screw rail
run by a motor. The cart and the pendulum do not move itself but the rail does. The motor is
connected to the computer and it takes in charge of all the calculations needed for a PID
controlling. The computer receives the information of x and theta, calculates how much force
is needed to make the pendulum upright, and gives the value for torque applied to the motor.
The motor’s speed 1s determined by at every one thousandth second. Using CEMTool, a
Matlab based program for controlling, we constructed PID controller system, which measures
and theta and calculates the force applled to the cart at every 0.001s.
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D. Experimental Method

Because of the limitation in the apparatus, we made experiments only on the case [ and
case 1il. |
i) horizontal oscillation

To realize the horizontal oscillation of the pendulum, we should know which function of
the force 1s needed to make the pendulum oscillate precisely. However, the mechanics of the
inverted pendulum system i1s complicated by the cart, the rail, and the motor which are not
considered in the theoretical model. The precise physical model which takes those three into
account 1s shown in Equation 20 & 21.

F =(m+M)3%+bi+mlOcosé—mld*sind (20)
—;'Ecosﬁ—gsin9=2!§ (21)

Basically, the real physical model has nonlinear components, so it’s unable to get a

solution for force F to make x, = Acosa¥, y, =0

As a result, we needed to adopt PID controller in order to realize the horizontal
oscillation. By handling PID gains, we made the pendulum stabilize with oscillation, and then
began experiments. Although the process of setting the gains’ values is arbitrary because of

the system nonlinearity, we were able to vary the stabilization patterns using a conventional
5

method for setting PID gains without mathematical calculation.

Figure 7 Diagram of cart-pendulum system (Left) and Oscillation interval of
the controlled inverted pendulum (Right)

a) Experiment 1 : Proving the theory’s validity

In the theoretical background part, we proved that in the stabilizing pendulum the value of
theta is determined by x. From the graph of x, we drew the graph of theta calculated from
Equation (18). Then, it is compared with the experimental value.

5 Engineers in the control theory use more complicated method to determine PID gains, but

we didn’t use it because this paper focuses on the motion of the inverted pendulum, not the
PID controller itself,
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b) Experiment 2 : how mass and length affect stabilization

Among many variables which affect the stabilization of the inverted pendulum, its mass
and length greatly determine major part of its motion, like those of the free-falling pendulum.
~ The pendulum consists of the heavy weight at the end and the rod. We prepared 4 different
finds of weights (24.4g, 35.9g, 73.3g, 108.5g) and observed the difference in stabilizing
pattern. Then again, with 4 different kinds of rods (30cm, 40cm, 60cm, 70cm) the
experiments were repeated.

ii) Experiment 3 : PID Control

As mentioned before, with PID controller the inverted pendulum can have various
stabilized patterns. It is also possible to stabilize faster and more accurately than simple
oscillatton. In this experiment, we searched for the condition of PID coefficients which can
achieve the perfect stabilization of the inverted pendulum.

First, we changed the values of PID coefficients one by one and checked their effects each.
In this case, we decided the standard of perfect stabilization as followings: first, less time to
reach stabilization (less than 5 seconds) and, second, almost no oscillation after stabilization
(angular amplitude less than 1cm). First, through simulation using CEMTool, we first grasped
the range of PID coefficients which stabilizes the pendulum. Then, minute adjustment was
based on actual demonstrations.

E.Result

i) Experiment 1 : validity of the theory

40. ¢

4.0-002 (—

% e

Figure 8 Graph of x and theta of the inverted pendulum stabilized by PID
Controller

Black box shows the oscillating interval.

It was previously mentioned that when the inverted pendulum is imposed an oscillation

Dcos at
. Figure 8 1s graphs for xg and theta
(02 + (902 g grap 0

Ieasure from Experiment 1, and we can see that when x starts to follow a sinusoidal function,
theta also resembles a sinusoidal function, implying the validity of the theoretical model. To
Prove that the the function of theta is exactly the same with that calculated by theoretical
model, we should check the amplitude and angular frequency of the cosine fuction. Table 2,
shown below, is the result for the comparison of angular frequency at various lengths and

Xy =Acosax, y, =0, theta becomes & =—
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masses. Notice that length of the pendulum, shown in the table, is equal to L, not 1, which is
defined as the distance between the pendulum’s pivot and the pendulum’s center of mass. The

relationship between L and 1 is later calculated in Appendix 1. m is the mass of the weight
attached at the end of the pendulum.

Table 2
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The error between expected amplitude and actual amplitude and that between expected
frequency and actual frequency are little. From the result, we can see that the theoretical
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model fits well with the actual experiment. Finally, when the pendulum’s pivot oscillates
Dcosat

o +a@,"

inx, = Acosax, y, =0, it can be stabilized with theta &=

ii) Experiment 2 : how mass and length affect stabilization

So far, we saw that the theoretical model for the inverted pendulum is correct by comparing
theoretical estimates and experimental values. Next, how the pendulum’s physical
characteristics, such as length and mass, affect the pattern of stabilization is studied during
Experiment 2.
~ Figure 9 shows the result. For every length of the rod, a weight with 108.5g was used. As
longer rod 1s used, the amplitude of the oscillation decreases while frequency keeps the same
value.

Also, we varied the mass of the weight on the tip of the pendulum. For every mass of the
rod, a 40-centimeter-long rod is used. As a weight with heavier mass is used, the amplitude of
the oscillation decreases while frequency keeps the same value. One with a heavier mass
tends to be stable,
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As length increases, the amplitude of the cosine
Minction decreases while the frequency remains the same. In other words, the long pendulum

$tabilizes more readily.

&7




iii) Experiment 3 : PID Controller
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Figure 10 Effects of P, I, D Coefficients

Figure 10 shows how the pendulum’s movement changes with P, I, D coefficients.
Although the only obvious characteristic shown in the graph is amplitude, it still represents
the coefficients’ roles in stabilization. As P increases, the amplitude increases, which 1s very
characteristic of P component. As I increases, the amplitude recognizably decreases, and
especially when I = 800, the pendulum is stabilized with almost no oscillation. This case (P=
300, I = 800, D=0.7) fits to the conditions of perfect stabilization. As D increases, the
amplitude increases. Difference between P and D is that the amplitude changes a lot more by
D than by P. The next chapter will analyze the result from the two experiments.
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F.Discussion

i) Experiment 2 : length

D
Apg = 2
'’ + @,
=mlw’ Al(lw" +mgl)
2M +m 2M +m
=m Lo*AI(M +—m)*@" + —\L
oM v om ( 3m) mg(2M —_
oL = o

- 22
B+ PL+y (2
where L is the length of the pendulum, I the distance between its pivot and 1ts center of
mass, m mass of the rod, M mass of the weight.

Substituting m, M, I, @° for D and @, clearly explains more stable motion in the

longer pendulum. As seen in the last Equation (22), L is in the denominator so that increase in
L eventually results in decrease in angular amplitude |

In viewpoint from energy and torque, more length means more moment of rotation.
Thus, the rotational energy from the basis affects less to the end of the long pendulum than
that of the short pendulum. It results in less overshoots, making the pendulum more stable.

Constancy of the angular frequency is because angular frequency of theta is the same
with frequency of x, defined by @. Thus, length does not affect to the frequency. Note that
the free falling pendulum’s frequency is affected by length.

ii) Experiment 2 : mass

2M+m 1 2M +m
A =m(———)L&*AM +-—m)*@* + mg(———)L 23
e = M) L” AN+ m) 8 )L) @)

From equation (23), mcrease in M causes angular amplitude decreases as denominator
increases faster than numerator.’ Thus, the graph in Figure 9 supports the theoretical
expectation.

iii) Experiment 3 : PID Controller

| The result from Experiment 3 basically supports the characteristics of P, I, D gains.
Increase in P and D coefficients makes the response faster at cost of stability. As a result, the
-angular amplitude increases as the coefficients become larger. On the other hand, I coefficient
improves the stability of the inverted pendulum system and reduces its angular amplitude.

We also saw the one case of perfect stabilization, in which the pendulum is stabihzed
‘with almost no oscillation. To find such cases of perfect stabilization, there are various
methods, such as Ziegler-Nichols auto-tuning method and Relay auto-tuning method.
However, in most cases, they are based not on physical modeling but mathematical control

_-l-__

¥ Detailed procedure of substitution is shown in the appendix 2.
_7 Detailed explanation for this statement is shown in the appendix 3.
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theories. Although there are model-based methods such as root-locus method and transient
response method, they are hard to apply to the inverted pendulum system because of its

complexity. As explaining about the methods need comprehensive knowledge of control
theories, we just introduce the name of methods.

G. Conclusion

The paper covers the inverted pendulum and its various controlling methods, including
PID controller. Theoretical model was established based on the basic mechanism of the
ordinary pendulum, and proved true by a series of experiments. It also enables us the
prediction for how physical characteristics of the pendulum, such as mass and length, affects
its movement and stability. The experiments showed the valid relationship between the
pendulum’s physical traits and stabilization patterns, which also correspond to the theoretical
expectation. Finally, PID controller provides the possibility that the pendulum can not only
just be stabilized but also be stabilized with various patterns. Among them, we analyzed the
perfect stabilization case and realized it. In this aspect, PID controller shows high
applicability and flexibility in controlling the inverted pendulum.

For one who should choose between PID controller or simple oscillation, the choice
depends on one’s preferences. As those two methods have strengths and weaknesses, shown
in Table 1, one should choose strong points as a tradeoff for other strengths. In conclusion,

the question how to keep the pendulum upright has many answers, and the choice is open to
the users. |
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Appendices

i) Calculation of the Center of Mass and Rotational Inertia

1
1
1
1
e s m e apfe R R T B T el sk riewn e oy
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a) Center of Mass

b) Rotational Inertia

11) Detailed process of the equation for angular amplitude

4 = D
e a)2+a)02
2
2 mglL mLa" A
where Wy = I , D= T ,,I=(lm+M)L2
B . 3

When we all substitute w,, D, and I, the equation becomes

D
Aung = >

mlw’ A

!
w4+ 18!
I
=mlw’ Al(I&* + mgl)
M+ m . 1 s 4 2M+m
=m La"Al((M+—mL "o +m L
M2 (M +3m) ot v am
. al R 7
AL+ PL+y .
2M+m | 2M4+m

where @ = m WA, B=(M+-ma’.y=
)@ AP =M A gmar,y=mg (o)

1i1) Denominator and numerator of the angular amplitude
The objective is to determine which side, denominator or numerator of the angular

amplitude, increases faster as M increases. wand A have their maximum value because the
Wverted pendulum cannot be stabilized over certain value of wand A. Although the
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thresholds cannot be measure precisely, the experiments showed that approximate maximum
value for wand A 1s 1.5 and 0.3, respectively. Thus,

w°A<1.5*03<g =98
Muttiply the both sides by mL, then,

mLw’ A <mgL

Thus, when x is variable, mL®" Ax increases faster than mgLx . When
_2M +m 2M +m 2M + m

X . my )L@" A increases faster than mg( )L as X increases.
2M +2m 2M +2m 2M +2m
Also, mg( 2M +m L <(M +lm)L2a)?' + mg( 2M +m Y.
2M +2m 3 2M +2m
. ) 2M +
Thus, m( cM +m YL@~ A increases faster than (M +—1~m)L2 @ +mg( e )L as
2M +2m 3 2M +2m
X INCreases
: 2M +m m . .
Since x = =1- —- X Increases as M increases.
M+2m 2M +2m
2M+m ] 5 2M+m
Thus, Lo* A increases faster than (M +—m)L " +m L
s M v 2m) (M +3m) S oM om

as M increases

In other words, the denominator of A, increases faster than the numerator of A, as

ang

M increases.
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