8 Problem Ne 11: Singing tube

8.1. Solution of Australia

Problem Nell: Singing tube

Kathryn Zealand, Brisbane Girls Grammar School, 47 Verney Rd. West, Graceville,
Brisbane, QLD 4075, Australia, s106863 @bggs.gld.edu.au

The Problem:

It is possible to stabilize an inverted pendulum It is even possible to stabilize an inverted

multiple pendulum /one pendulum the top of the other/. Demonstrate the stabilization and
determine on which parameters this depends.

1. Abstract

The Rijke or Singing Tube is a vertical tube with metal gauze inserted in the lower half.
After heating the gauze, a loud sound is produced. By investigating many aspects of the
Singing Tube phenomenon, it was discovered that during a compression, cool air 1s drawn in
and heated, this causes its pressure to change, augmenting the pressure maximum. This action
creates and sustains the acoustic wave, however when determining the optimum gauze
position, the two factors of consideration disagree. The Rayleigh Criterion and Rayleigh
Index provide a more precise model of the relationship between gauze position and sound
intensity. Expressions for heat transferred from the gauze, and where this heat was lost to
provide insight into the mechanisms which determine how long the singing can be sustained,

and thus what variables to experimentally investigate, these included tube length, diameter,
material, shape and the gauze’s heating time.

2. Interpretation

We were asked to investigate the ‘singing’ produced by an open tube over a flame. We
defined ‘singing’ as a loud sound with definite frequencies, and minimal variation in sound
intensity. We tried producing a sound with just a tube over a flame; however, we did not
count this quiet and raspy sound as ‘singing’. Research suggested that adding a piece of gauze
inside the pipe would enhance the noise to a louder and measurable ‘singing’ tone. Therefore,
we concentrated on this interpretation of a singing tube (also called the Rijknt:8 tube).

3. Basic Theory

There were 2 phases of heating, in the initial heating phase, the Bunsen heats the gauze, yet
no sound is produced. After removing the heat source, the tube ‘sang’ for a period of time
before stopping. To understand how this creates sound, some basic theory 1s needed.

3.1. Waves

Sound or Acoustic waves are longitudinal, meaning that the particles vibrate in the
direction of the wave’s propagation. A sound wave is made of compressions (areas of high
pressure) and rarefactions (areas of low pressure). Particle displacement and pressure
vartations can be modelled by the stnusoidal functions {1]:

8 P.L. Rijke was a professor of physics at the University of Leyden in the Netherlands when, in 1839,
he discovered this phenomenon
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Figure 11 Pressure and Displacement functions are out of phase

Where o 1s the angular velocity, p 1s the pressure, k 1s the wave number, s, 1S the
displacement amplitude and pp, is the pressure amplitude. The pressure and displacement
functions are out of phase.

Hot air is less dense than cool air, so will rise. An initial compression 1s caused by the
rising hot air, as the static air above it will ‘bunch up’ causing a compression. This hot
moving air will also cause a pressure difference between the inside of the tube and the
ambient outside pressure, so a pressure barrier at the end is formed. Some of the initial
compression will then reflect of this barrier back down the tube. The retlected compression
will constructively or destructively interfere with the rising hot air forming a standing wave.

3.2. Standing Waves and Resonance

The standing wave is cause by the
interference of the reflected wave on

Fundamental harmonuc, f,

itself. A standing wave consists of 5= 2L
nodes (arcas of least particle and

velocity displacement) and antinodes 1* harmonic (2™
(arecas of maximum particle and overtone), f,
velocity displacement). The standing £,=2f »=L
wave causes us to hear a continual tone. |
Resonance is caused when the standing 2°% harmonic (3"
wave 1s continually reinforced, the overtone), f,
amplitude is increased creating a very £;=3f, x=3/2L

loud sound, the air column in the pipe is
said to resonate.

3.3. Harmonic frequencies
For the tube to resonate, the tube length must be a multiple of half wavelength of the
standing wave, we can express this as nA=2L., where A is the wavelength, and L is the tube
length. The first harmonic is called the fundamental harmonic (fy) and only has one nodal
point in the tube. Higher harmonics are multiples of the fundamental (see figure 2).
- From the wave equation, v=f\, where v is the velocity of sound, and the relationship
:iibove, we can derive a formula for the frequency {2].

Hnv

2L
v=fA=f=" pi=2L 173

""{Hnwever, the air particles also vibrate with a slight sideways motion, and beyond the end of
:_=ﬂ1f: tube. This results in a necessary ‘end correction’ [3], where d is the diameter of the tube.
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For the fundamental frequency (n=1), and at a temperature of 34°C (where v, the speed of
sound is 351ms™"), the frequency becomes: |

F=158 roag)
L+0.4d

4, Sustaining the acoustic wave

Some of the wave and thus energy escapes and is emitted at the end of the tube. Therefore
heat energy must be added to sustain the oscillations. There must also be a continuous air

flow; we demonstrated this by turning the tube to horizontal, which removed the thermal
convection. As predicted, the tube did not sing.

4.1. Velocity and Pressure Fluctuations

The flow past the gauze 1s a combination of two motions. There 1s a uniform upward
velocity, caused by the rising hot air, and a varying velocity, u’ caused by the sound wave
(oscillatory particle vibration velocity).

There 1s an ambient or mean pressure, as well as the varying pressure, p° caused by the
compressions and rarefactions of the acoustic wave.

4.2. Amplifying the wave

For half the cycle, the varying and uniform velocities are in the same direction, which is
when the particles around the gauze are vibrating upwards, in the same direction as the
thermal convections. Therefore, air will be drawn up into the tube until pressure reaches a
maximum. Most of this air will already be warm (having been expelled from the hot tube
during the last cycle). However just before the pressure reaches a maximum, some cool air 1s
drawn in, this is because the uniform thermal convection pushed some of the warm air out of
‘the top of the tube last cycle. This cool air is quickly heated by the hot gauze, so there is a
large heat transfer. This causes the (previously cool) air’s pressure to increase, adding to the
pressure maximum. Therefore, although energy is being lost at the top of the tube, every cycle

a small part of the gauze’s heat energy is used to increase the pressure maximum, thus
amplifying the wave,

4.3, Optimum gauze position

Since the singing is caused by cool air increase in pressure, there two things which must be
considered when determining the optimum gauze position. First, the placement of the gauze
should be such that the amount of cool air heated is optimised. As it is the combination of
varying and uniform particle velocity that determines how much cool air gets heated, this
would suggest that the gauze should be placed where the varying velocity is at a maximum, at
the anti-node, for the fundamental frequency, the anti-node 1s at the end of the tube.

The second aspect to consider is where the cool air’s pressure increase will have most
impact. The pressure increase reinforces the varying acoustic pressure, but at an anti-node, the
varying pressure is zero, so placing the cool air’s pressure increase would have no effect. The
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varying pressure 1s at a maximum at a node, so according to this, the gauze should be placed
at a node, which is at the middie of the tube for the fundamental frequencies.

These aspects clearly disagree, so all this tells us is that the optimum position is a
compromise, somewhere between the end and middle of the tube. The Rayleigh Criterion is a
mathematical description of the interaction between pressure and velocity fluctuations and
allows for more precise optimisation of gauze placement.

5. The Rayleigh Criterion

As energy escapes at the top end of the tube, to sustain the acoustic wave, heat energy must
be added at certain points, according to the Rayleigh Criterion [5]; “If heat be given to the air
at the moment of greatest condensation, the vibration is encouraged”. This means that most
heat must be added 1n a compression. Please see section V of the Onera short lecture course of
Combustion instabilities in liquid rocket engines [6] for a mathematical proof and derivation
of the Rayleigh Cnterion.

5.1. Velocity and Heat Transfer

‘When there is a large heat transfer, many particles get heated and thus, many rise, this
creates a large varying velocity. So the heat transfer, Q’ creates the varying velocity, u’.

As mentioned previously, when cool air is drawn in, heat is transferred easily so the heat
transfer, Q’ 1s large. When the varying velocity, u’ is down and against the upward flow, there
is little airflow, less cool air is drawn in, and the gauze is surrounded by warm air. Therefore
there is less heat transfer, Q’ is small.

So Q' varies with u’, and there may be a time lag (as it is a cause and effect, rather than

simultaneously). This can be expressed lby: O U  Where 1 is the time lag. In summary,

the heat transfer is creates the varying velocity, and it is sustained by the varying velocity, so
once the cycle is initiated, the waves are sustained.

5.2. Rayleigh Criterion Integral

- The Rayleigh Criterion can be expressed as “If p’ > 0and Q" > O or p’ <0 and Q’ < 0, the
wave 1s sustained” where p’ is the acoustic pressure, and Q’ is the heat transfer. A convenient
way to express this statement 1s in the following integral, where T is the period of the wave,
and R is the Rayleigh index [7]:

1
R=— ‘O dt
= pQ

;}_fhe.Rayleigh Criterion can now simply be expressed as if R > 0 the wave is amplified. Sound
Intensity will be greatest when Iis maximised.

3.3. Optimum gauze position
N The optimum gauze position (for sound intensity) will occur where the Rayleigh Index,
R, is maximised. It was seen in section 5.1, that the heat transfer is proportional to the varying

. ? ? . i _ _
velocity, ' @ 4 5o R is proportional to the product of acoustic pressure and velocity.
1 { Now we need to maximise p’ u’. It was explained in

=— |p'Q'dt & Re— |p'u'dt section 3.1, that the acoustic pressure and velocity

r I are sinusoidal:
S Recp'tt
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velocitv

u'(x,t)=u'y, cos(kx—ax)
p (x,t) = py, sin(kx—ax)

-

%

Since we are only concerned with proportionality, and uy, and py, are constants (maximum
amplitudes), they can be neglected:

R o< cos(kx — ax )sin{kx — ax)
Here we can substitute in the trigometric identity, 2 sinx cosx = sin2x:

R o< -;-sin Z(kx - ax)

R o< sin 2(kx — ax)

This function has a similar shape to the function for acoustic pressure, but it has half the

period, therefore, R will be at a maximum halfway between the end of the tube and the node
in the centre of the tube, where the pressure has a maximum:

Velocity

Acoustic

Rayleigh index

N.B. waveforms are for comparative purposes only; the amplitude of the Rayleigh index -
wnnld he different die tn canctante nf nronnrtinnality '

Figure 4 Diagram showing that the Rayliegh index is proportional to the product of velocity and

pressure, and is at a maximum 25% up the tube, thus this is the optimum position for the gauze

So the optimum gauze position is where R is at a maximum, which is 25% up the tube, and
the sound intensity should follow a similar sinusoidal curve to the Rayleigh index as the

gauze 1s moved along the tube. This supports the qualitative explanation presented in section
4.4, |

5.4. Gauze in upper half of tube

However, by this logic, a sound should be created when
the gauze 1s 75% up, as this is also halfway between the
fundamental node and anti-node, however, the cool air is
drawn towards the centre just before the pressure
maximum, and is pushed up past the centre after the
pressure maximum. When the gauze is in the top half, the

Figure 12 Using a vacuum cleaner t0

reverse the air flow, changing the

optium gauze position
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cool atr 1s heated just before the pressure minimum, so the increase in the cools air’s pressure
cancels the acoustic decrease in pressure, thus diminishing the sound.

We proved this by reversing the direction of the thermal convections with a vacuum
cleaner. This pushed cool air 1n from the top rather than the bottom. When using an artificial
air flow, a sound was created with gauze in the top half.

6. Heat Transfer

It has been demonstrated that the gauze will transfer little heat in a rarefaction, and lots
in a compression, but how much heat is transferred, and what effect will this have on the
singing time? Expressions for the amount of heat transfer will be derived in the following
sections.

6.1. Heat Transfer Expressions

Let us first examine where the heat from the gauze is lost to heating the air to provide
the uniform thermal convection, sustaining the acoustic wave (heat transferred to cool air,
discussed in section /), and losses, which will be predominantly through conduction to the
tube walls. The heat absorbed by the gauze through heating must transformed to the energy
forms listed above, as energy is conserved, these must be equal.

This can be expressed 1n a differential equation as;

ngﬂH‘Zf — degnpgcffgn + dQEFﬂf"EdH—'HPE + deﬂjsfj

dt dt dt dt

Where dQ/dt i1s the rate of heat transferred (measured in Joules per second). The
standard equation for heat transfer to the gauze during heating is [2]:

anbsnrbed by gauze dTgaus:e

=Cc. m

dt S8 dr

m, 1s the mass of the gauze, and dT/dt is the change in temperature of the gauze. The heat lost
through convection to the air can also be modelled by the standard heat transfer equation {2}:

Where c, is the specific heat capacity of the gauze,

dans!. through convection c.m. dTuir

dt arrs o dir dt

1s the mass of air, and dT/dt is the change in temperature of the air, after passing the gauze.
The average rate at which kinetic energy, Ey of a sound wave escapes can be expressed as: [1]

Where ¢, 15 the specific heat capacity of air, my;,

dQem:'uEd wave dE 1

At . dtk =“1_gpAvw23i Where p 1s the density of air, A is the cross-

'scctional area of the tube, v is the velocity of thé wave, 0 i1s the angular vélocity, and Sy, 1S the
displacement amplitude. Most of the losses will be thermal conduction to the tube walls, this
can be modelled as follows:

AT

g_Qf”hE — kA(?;wI _ T; u!d) &> debe — kA tithe
dt dt dt

103




Where k is the thermal conductivity co-efficient. = These components can now be

combined, so the original equation:

ngHHZE _ dchnpgcﬁgn + dQE‘IHfH&'d weve + dQ{ugw_ Becomes
dt dt dt dt '
dT. dT.. 1 dT
mec, —= =m, c,. —2 +—pAv@’s, + kA—Lbe
dt dt 16 dt

6.2. What can this expression tell us?

This expression reveals the limiting factor which affects how much heat must be given to the

gauze for singing to occur, and how long the tube will sing for. The tube will start singing
when:

dT
gauze > 1 m.c. dTmr + i pAv(g S + kA dT
dt  myc, dt 16 .

To keep singing, the gauze must have enough heat or a large enough temperature gradient to
provide constant heat to the air convections and losses to the tube. So the tube will stop
singing when:

dTgam 1 darT . | T ,
< M i Cir a +— e
dt m.c, dt 16 dt

Therefore, this expression reveals many factors and variables which affect the onset and
discontinue of the singing. The type of gauze will have an effect since the expression starts,
I _, and both the mass and specific heat capacity are properties of the gauze, since it is the

l’ﬂgﬂg

inverse of mass, the tube should sing for earlier and for longer when a heavier gauze is used,
since a heavier gauze could absorb more heat. The atmospheric conditions will also affect the
singing, since at different temperatures and humidities, the specific heat capacity of air
changes. Also, 1f the air starts of warmer, then the change in temperature as 1t passes the
gauze (dT,/dt) would be less. This is why | IR '
all the trails for an experiment were
conducted on the same day, or when the
temperature 1s similar (within 3 degrees).
The cross sectional area, A, which is
directly proportional to the diameter,
appears in all three terms on the left had side
of the heat transfer expression (my;, = Avpt)
and so that 1s why the cross sectional area
was a controlled variable in experiments,
and tube diameter was chosen to be
investigated as an independent variable. s,

Figure 13 vacuum cleaner used to replace the

thermal convection, the tube sings in a horizontal
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in 3% term is the displacement amplitude, it describes how far the particles vibrate and thus
determines sound intensity. This is why either sound intensity or singing time were measured,
because they effect each other.

arl

fihe

In the very last term, KA — dl "t"", k 1s the thermal conductivity co-efficient, which is a

ﬁmperty of the matenal, this highlighted the importance that the tube material has, which is
why the matenial was investigated as an independent variable, and controlled in all other
“experiments.

7. Stopping the singing

There are three methods of stopping the tube from singing; hold the tube horizontally,
place heat source under tube, and let the gauze cool.

When the tube is held horizontally, there is no thermal convection, so no cool air brought
in contact with the gauze, so the wave cannot be amplified (we demonstrated that it was the
lack of thermal convection preventing amplification by using a vacuum clean to produce
artificial convections). When the Bunsen bumer or another heat source is under the tube, the
air passing the gauze has already been heated, so with no heat transfer possible, there is no
pressure increase to sustain the acoustic wave. As the gauze losses its heat energy to the
passing air, 1t will gradually cool, until it is no longer able to supply enough energy to
facilitate a pressure increase, and sustain the wave.

8. Cold Gauze

- The change in temperature between the gauze and the air causes the phenomenon;
therefore, a similar sound can be produced with a gauze which is cooler than the surrounding
air. A weak sound was produced when cold gauze (from freezer is sufficient in the Brisbane
summer) was inserted 25% up the tube. The cold gauze causes a downwards convection
¢urrent, so warmer air 1s drawn in at top just before the pressure maximum, and reaches the
gauze in the bottom half just before the pressure minimum, the warm air is rapidly cooled by
the gauze, its pressure decreases, enforcing the pressure minimum.

?9. Our Investigations

90 General Procedure

T’he Imm steel gauze was inserted
% of the way up each tube. The
Bunsen burner was slid under the
tibe and 10 seconds later, the
Bunsen burner was removed and
dnother person recorded the
ﬁmgmg with the microphone. This
was repeated for all the tubes, five
times then averaged.

Figure 14 Sample datum collected and demonstration
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9.1. Tube Length

9.1.1. Hypothesis

As the tube length increases, the wavelength of the sound will increase, and therefore its
frequency will decrease. The frequency and tube length should have the following

. _ 1
relationship: f =175.5
P 7 [L+O.4d

). As the tube diameter was constant, the graph of frequency

VS. : should be linear.

L+0.4d

9.1.2. Results

1400 There was an audible difference

1200 in pitch between the ‘singing’ from
+ Measured Fund tal .
ﬂ’lt? larger and smaller tubes, this is

1000 eVIdence that the frequcncy was

changing. The longer tubes

produced a weaker tone.

oo
o
-

Frequency (Hz)
n
L
[

>
o
-

200 Figure 4 Graph of results from Tube

0 0.5 1 1.5 2 2.5 3 3.5  Length experiment, linear relationship
1/ (L+0.4d) (1/m)

9.1.3. Discussions

We derived In section 4.3 that the fundamental frequency (at 34°C) was given by:

1

f=175.5 T 2044 So in the above graph, a linear relationship predicted, with a

gradient of 175.5. In the experimental results, the linear relationship is reasonable since the
datum points are scattered on both sides of the line, the R? value is 0.9893, and the
uncertainties are small. The measured gradient was 177 * 4. Therefore, the Harmonic
equations dernived in section 4 are accurate (within the uncertainty) and our hypothesis was

supported. We have also consolidated the knowledge on which these equations were
derved.

9.1.4. Conclusions and Reflections

In section 9.1.3.1. it was observed that the sound volume and therefore intensity decreased
as the tube length increased, this was unexpected, and upon further qualitative experiments,
when heated for a longer period of time, the longer tubes ‘sung’ with more intensity than the
shorter ones. One possible explanation for this discrepancy is that in longer tubes, the gauze
1s further from the Bunsen burner flame, so more of the flames heat may have been used to
heat the longer air column and tube wall in the longer tubes than in the short tubes. Hence,
an improvement to the procedure would be to measure the temperature of the gauze, and
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stop heating once a certain temperature had been attained, rather than heating for a specific
duration of time.

9.2. Tube Diameter

9.2.1. Hypothesis
As the tube diameter increases, the frequency will decrease. The relationship should be

L+04d

] In this experiment, the tube length, L. was constant, so the graph of

|

frequency vs.
e L+0.4d

should be linear, with a gradient of 175.5.

0.2.2. Results

The effects of changing tube diameter on frequency For tubes bigger than 20cm
wemmomsegs 10 dlameter, it became increasingly

difficult to produce a sound. The
larger diameter tubes had a larger
sound intensity until they stopped
producing a sound. There was
very little audible vartation in

pitch, since the frequency only
varied ~10%.

1.7 1,75 1.8 1.85 1.9 1.95 2
1/{L+0.4d) , $/m

-Fﬁm 8 Graphed results from Tube Diameter experiment, linear relationship

923 Discussions

We derived in section 4.3 that the fundamental frequency (at 34°C) was given by:
jf=175.5[ :

L+0.4d

and 1/(L.+0.4d). Since the points at scattered both sides of the line, with an R? value of 0.9952,
this relationship is reasonable. In the above graph, the predicted gradient was 175.5, and the
measured gradient was 174 = 5. Therefore, (within the uncertainties), it has again been show
that these Harmonic equations are accurate. We have also supported our hypothesis, that as
the tube diameter increases, the sideways vibration of the particles and therefore the tube’s
end correction increases, thus frequency will slightly decrease. However, it was observed in
section 5.2.3.1 that this effect was less noticeable than it was when changing the tube length
in experiment 5.1. This is because in our derived equations, tube diameter is multiplied by
0.4, 50 is decreased, and the diameter of all the tubes was less then their length, thus changing
the diameter of the singing tube had less of an effect than changing the length. The increase
in sound intensity with increasing tube diameter is due to a larger air flow since there 1s more
hﬁt gauze available to heat the air and cause the thermal convections.

]Experimentally, there was a linear relationship between the frequency
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9 2.4, Conclusions and Reflections

In section 5.2.3.1, it was observed that it became difficult to produce a sound when the tube
diameter was greater than 0.20m, and the sound intensity decreased. A possible explanation
for this 1s that will a wide tube, the barrier of pressure difference necessary for the travelling
wave to retlect and cause a standing wave becomes unstable and weak, due to a less defined
‘end’ of the tube. This would cause only some or none of the wave to be reflected, producing
a weaker standing wave. One possible method of testing this would be to use a very sensitive

pressure probe, so detect the strength and location of the barrier, such a sensitive instrament
was not available for our use.

9.3. Tube Shape:
9.3.1. Hypothesis

Since it is the column of air that resonates, not the tube its self, changing the horizontal shape
of the tube should have no effect, as long as the tube still contains a region of air.
9.3.2. Results

Shape |
Approximation \ / \ / / \ / \ > < < (
% change 1n 200 400 50 25 0 (centre =200%)
diameter »
observation Weak | No sound | Normal | No sound | Gauze wouldn’t ' saker
sound sound stay 1n, No sound

Table 4 Frequency and observation results from Tube Shape experiment

9.3.3. Discussion

There did not appear to be any clear trend in changing frequency (all values were within
the 23Hz margin of error). In addition, our hypothesis was supported in the fact that the
frequency 1s independent on the shape (this is because the tubes purpose is to channel the

rising hot air, and provide boundaries for the air column that resonates, neither of these
properties are affected by slight changes in tube shape.)

9.3.4. Conclusions and Reflections

Tube shape has little effect on frequency.

It was observed in section 5.3.3.1 that for some shapes, the sound was weak or non-
existent, which contradicts the hypothesis that shape has no affect. A possible explanation is
that it 1s not the shape of the tube that is inhibiting sound production, but rather the diameter
at either end. As experienced in section 9.2.3.1, if the diameter at the top or bottom of the tube
1s too great, no definite barrier of pressure exists, so the standing wave cannot by created. A
possible further experiment would involve using tubes of the same proportion, or same
percent increase in diameter, but are smaller, as this would determine if a breakdown in the
pressure barner was responsible for the weaker sound. The curved tube may have produced a
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weaker sound because the Bunsen’s heat was not directly under the gauze (it was under the
end of the tube), so the gauze may not have been heated as effectively.

9.4. Tube Shape:
9.4.1. Hypothesis

Since tt is the column of air that resonates, not the tube its self, changing the vertical cross
section of the tube should have no effect on the frequency and sound intensity, as long as the
tube still contains a region of air.

9.4.2. Results

Circular Square Tniangle

1 Frequency (Hz) 235 235 237

Observation Loudest sound Weak sound Weak sound

'i‘able S Frequency and observational results from the Tube Shape (horizontal)
experiment

9.4.3. Discussion

~ Since sound 1s a longitudinal wave, and it 1s the air not the tube that resonates, there was no
noticeable effect on frequency (within the 10Hz uncertainty), supporting the hypothesis. The
observation of the sound being strongest with the circular tube was unexpected, and difficult
to explain, our best inference is that there is more air flow in circular tube because the
triangular and square tubes had corners, and a larger internal surface area. This may cause a
larger boundary layer, so the air flows slower in the corners and the gauze in the corner areas
doesn’t heat as well, so the useable area in the square and triangle is effectively reduced to
that of a smaller circle (see figure 4). This would account for the decrease in sound intensity.

Arca of circle = Area ol squarc = 3.14 Arca of triangle = 3.14
3.14 Area of circle = 2,47 Area of circle = 1.05

Figure 7 Although all tubes had the same area, this diagram shows that since air got caught in
the comers, the shaded usable area jikely decreased.
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0.4 4. Conclusions and Reflections

Tube shape had little effect.

An interesting further experiment would involve electrically heating the gauze, to ensure
even heating, and having an artificial airflow though the tube, this would help determine if the
reasons behind the observed changes in sound intensity.

9.5. Tube Material

9.5.1. Hypothesis

We saw in section 6 that if the change in temperature of the gauze becomes less that the

that required to heat the convecting air, the tube and sustain the kinetic energy of the wave,
the tube stops singing, this was explained thus: when

dTSﬂuze < 1 /m B dT
- air —air
dt m.c, \ dt

air
+ S

A
PAV@’s® + kA dl, ;.
dt

The tube stops singing. The k in the last term is the thermal conductivity of the tube. So
from this equation we can see¢ that as the thermal conductivity of the material decreases, the
tube will sing for longer, as the gauze needs a lower temperature to sustain the wave. When
the thermal conductivity of the tube material increases, the gauze needs more heat, and so will
not be able to sustain the singing for as long. As sound is a longitudinal wave, the tube acts
only as the boundary for the air column inside which vibrates, therefore the frequency should

be unaffected by the tube material.

9.5.3. Results

Material iron | steel | aluminium | PVC | wood | Glass | Paper | Plastic | Eardhoard
| — el
Thermal conductivity | 79.5 | 50.2 205 0.19 | 0.1 0.8 0.05 0.02 007

frequenc _ 223 - |- [ 2285

Singing time 24.3 39.1 1 395 | 37 - - 40

Table 6 Frequency and Singing time results for materials of different thermal conductivities

The paper and thin plastic tubes did not sing because they combusted.

The effect of the themai conductivity of materials on
the Singing Tima

50 L
45 f‘:‘ﬁ o

3 e e
st e
: 1;1:‘;:..'*".‘;\__-.“‘1?1 ..w.?_p-" \.'. e ;:_"'_‘_"' R

0 50 100 150 200 250
Tharmal Conductivity (W/mK)

The effect of different materials on frequency

. "
:: opeeroen et e B 1!'1

------
'''''''''''

usncy squared {Hz"2)

4 0.02 0.04 0.06 0.08 0.1
Thermal conductivity/mase’ specific haat capacity, Wme (1/ms)
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52000 e B e e
e e S T L e e e ool e e T

Figure 9 The effact of thermal conductivity of the tube on the Singing time and frequency
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9.5.4. Discussion

The hypothesis stated that as the thermal conductivity increased, the tube should sing for
less time, since more of the gauze’s heat was conducted away to the tube. This was supported
experimentally and an exponential relationship was found. However, the hypothesis stated
that there should be no effect on frequency, however this is not what we found
experimentally; there was variation in frequency for the different matenals. Therefore, after
brainstorming the differences in the materials, and what could cause the frequency to change,
the relationship was realised. Some matenals conduct heat away from the gauze and air more
than others. Tubes with a high thermal conductivity will conduct heat away from the gauze
easily, so the gauze is cooler and will not sing as long as it will in tubes with a low thermal
conductivity. Recall from section 4.3. the equation for frequency:

v for same sized tubes, L and d are constant

S LS LA > [ ocy
/ 2L +0.84 /

- As long as the tube length and diameter are kept constant, the frequency is directly
proportional to the velocity of sound. However, the speed of sound is not constant, it depends

upon the temperature. |
V= ’}RT( R and y are constants )Vn‘:ﬁ [4]

So now it is clear that frequency has a squarely relationship with temperature:

f o< N f* o<T However, we do not know how the different materials change the

temperature in the tube. Recall the equations regarding temperature and heat from section 6,
the information concerning their thermal conductivity, k, and specific heat capacity, ¢ is
available. Thermal conductivity is a measure the rate at which heat is transferred per unit area.
Since all the tubes had the same dimensions, Heat lost is proportional to the thermal

conductivity, Q o< k .

Heat lost can also be expressed in terms of the mass and specific heat capacity of the tubes,
Q=mcT. Therefore, it means that:

freT
k
Q=mcT <k & T oc—
mc
. . . £2 k 2
So this predicts that a .. f~ o< —— graph of f* vs. k/mc should
mc

be linear. Experimentally a linecar relationship  was
found. This relationship is reasonable since the R* value is 0.9981. The relationship had a
gradient -30000+1200, and intercept of 50000+4000Hz". This means that if the tube were a
perfect insulator (k=0) then the frequency would be 223Hz=V50000

9.5.5. Conclusions and Reflections

Frequency and the thermal conductivity of the tube have the following relationship:
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£2 =-30000-2-+

o 0000 1t was felt that this experiment could be improved by having

materials with a wider range of thermal conductivity values, as the PVC, wood, glass and
cardboard tubes all had similar values. Although the hypothesis was proved incorrect, more

interesting discovenes were made as a result.

9.6. Gauze Position

9.6.1. Hypothesis

It was discovered in section 5.3. that the Rayleigh Index and therefore the sound intensity
follow a stnusoidal function with respect to the position of the gauze in the tube. This sine

curve has a period of the length of the tube (100%), and a maximum at 25%. The graph of

sound intensity vs. the sine of the product of 3.6 and gauze position should be linear. (3.6

alters the normal period of the sine function (360°) to the length of the tube, 100 (%). 3.6=
360/100)

9.6.2. Results

The tube did not sound at all when the gauze was in the upper half. The computer program:

recorded background noise, so although seven was the lowest sound intensity recorded, the
tube did not contribute to this, and was silent at the time.

the effect of Gauze position on Sound Intensity Gauze position vs. Sound intensity
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Figure 10 Graphed resuits for sound intensity from the Gauze Position experiments

The effect of Gauze position on sound intensity
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Figure 8 Linear relationship of Gauze posktion resuits
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9.6.4. Discussion

As predicted, sound intensity and the sine of 3.6 times the gauze position had a linear
relationship. This relationship is reasonable, as the R’ value is 0.9862, and the data points are
scattered both sides of the line. However, on this graph there were often two data points for
the same x value. This 1s because the sine function increased then decreased so in the first two
graphs the same y value 1s reached twice. In an ideal world, these points would always be
concurrent, and the distance between them represents the error in this experiment. The
equation which this linear relationship represents is:

=78sin(3.6gp)+ 8

Where I, 1s the sound intensity and gp is the gauze posttion. The gradient of the linear
relationship was 78 = 3, and this represents the amplitude of the sine function (of sound
intensity vs. gauze positton), or the maximum sound intensity achieved. The intercept is 8 + 2
dB, and this represents the background noise picked up by the microphone.

The linear relationship did not continue when the gauze was in the top half of the tube, as
the sinusoidal function predicted negative sound intensities, which are impossible.

9.6.5. Conclusions and Reflections
‘The hypothesis was supported; the position of the gauze in the lower half of the tube had a
sinusoidal relationship with the sound intensity, the relationship is: /=78sin(3.6gp)+8

It was felt that the errors and uncertainties in this experiment were quite large, and only
just acceptable, the main reason for this was the unpredictable background noise, so the
experiment could be improved by conducting the experiment in a silent environment, or one
with a uniform background noise.

9.7. Heating Time
9.7.1. Hypothesis

~ As seen 1n section 6, the heat absorbed by the gauze is lost through convection to the air,
conduction to the tube, and in the kinetic energy of the sound wave, so the singing time will
depend on how long the heat from the gauze is greater than these loses. This is demonstrated
in the following equation: when

dT .
a gauze < 1 ( mmr Cﬂgr drwr + _1__ AV CUZ Si + kA dzubﬂ )
dt mg, dt 16 dt

The tube stops singing. Therefore, the singing time depends on the temperature or heat
absorbed by the gauze just before it starts singing. The temperature of the gauze while heating
- dr ganze
dt
that initially, when the gauze is cold, it will heat very quickly so Tounsen — sauze 18 large, but as
the gauze heats up, there will be a smaller temperature difference, until heating the gauze any
longer won’t make much difference. When you differentiate Newton’ law of cooling and
heating, you get a logarithmic relationship between the heating time and the temperature of
the gauze. We could not derive the exact relationship between singing time and temperature
of the gauze (and therefore heating time), due to the large number of variables in the heat
transfer equation above, however the logarithmic relationship will still be present.

can be modelled by:(Newton’s law of Cooling) :kA(Tbuiwen "Tgauze) This means
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0.7.3. Results

The affect of heating time on the singing time
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Figure 11 Graphed resuits from the Heating Time experiment
9.7.4. Discussion

Expenimentally, there was a logarithmic relationship between heating and singing time.
This relationship is reasonable, since the R? value is 0.9872, and the uncertainties are small,
but the scatter of points indicates that there may be other factors of consideration. This may
be due to the effect of heating the air aroung the gauze at the same time as heating the gauze,
This supports the hypothesis that the relationship between heating time and singing time
should be loganthmic because singing time 1s approximately proportional to the temperature

of the gauze (after heating), and the temperature of the gauze after heating has a logarithmic
relationship with heating time.

9.7.5. Conclusions and Reflections

As predicted, increasing the heating time increased the singing time, in the relationship.

fsin ging = 1.6 lﬂ(‘heutﬁng ).. It was felt that this experiment could be improved if the gauze could

be electrically heated, as then the amount of heat could be calculated directly from the amount
of electrical energy put in. This would simplify equations and reduce error; however,
unfortunately we did not have access to the voltages required. Further investigations into
measuring the temperature inside the tube, around the gauze with a thermocouple array would
help to determine if Newton’s law can really be applied, in that it is justified to treat the
system as a closed system with just the gauze and the Bunsen bumner flame.

10. Summary

The singing tube phenomenon is caused primarily by a compression drawing in cool aitr,
which encounters the gauze, heats and increases in pressure, this adds to the pressure

maximum. The optimum gauze position is determined by where the most cool air will be
drawn in, and where the cool air’s pressure changes will have the most effect. The Rayleigh
Criterion and the Rayleigh Index model this, causing the sound intensity, I, to have a

sinusoidal relationship with gauze position (gp, measured in percent): [ =78sin(3.6gp)+8

The standing wave, which this sets up, has a frequency determined by the tube length and
1

L+04d

. The frequency is also determined by the r = 175_5[ )diameter through the expression:

k

.The f~ = EBOOOOE +30000 thermal conductivity, k, of the tube material in the relationship:

standing wave 1s longitudinal, so 1s mainly unaffected by changes to the shape of the tube.
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The heat transferred from the hot gauze to the air, tube and acoustic wave can be modelled

dT ar. 1 ., AT
. HITE — : e
by the expression: /7t,C, c;t m.cC.. -—;—ﬁﬁ- + -l—é- PAV@’s. + kA drt .

This expression and Newton’s law of Cooling lead to the relationship between the time the

gauze 18 heated, and the time the tube sings: fsings = 7-6111(5 heated ) .

This applicable and interesting problem has been thoroughly investigated, and many
relationships have been found. The discovery of the relationship between gauze position and

sound intensity: /=78sin(3.6gp)+ 8is of particular scientific significance. This is because if

the maximum sound intensity allowable by a system (such as the vibration limit at which a jet
engine would start to break up) is known, then this equation can effectively predict were and
were not a heat source must be located in order to prevent these dangerous vibrations. For
example, the optimum point of fuel ignition in a jet engine can be determined.
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