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The Problem

Investigate the motion of a magnet as it rolls down an inclined plane.
Abstract

We present a solution to the problem of a permanent magnet rolling down an incline,
investigating two main cases, conducting and nonconducting plane. For the former, more
interesting case first — order Maxwellian theory was developed and thoroughly tested
expenmentally, yielding good agreement, while the latter, much simpler situation was
modeled considering Earth field — magnet interactions. Plate boundary effects on the

conducting plate are considered qualitatively and only demonstrated experimentally due to
mathematical difficulties.

1. Introduction.

The phenomenon of a magnet slowly sliding down a metallic incline is very familiar,
being one of the most dramatic demonstrations of eddy currents and the force they produce.
Many studies have been dedicated to it (eg. [1]), and we can say that it is well understood in
the framework of the Maxwellian electromagnetic theory. However, this effect is by far not
the only amazing consequence of eddy currents induced by moving magnets, and in this
research we will study a closely related phenomenon: the rolling motion of a magnet on an
incline. In contrast to the aforementioned matter of a magnet sliding down a metallic plane, in
this case the only influence on the moving magnet is the magnetic field of the Earth. This
field can provide a torque causing the magnet to change direction so as to set its magnetic
moment in a direction parallel with the direction of the field. This means that, even on a
nonconducting plate, the magnet will stray to the north, following a curved trajectory; thus the
first part of our research will focus on the behaviour of a magnet rolling down an insulating
plane under the influence of the Earth field. In the second, by far more interesting and
fascinating part, we will add a conducting plate and try to explain the effects of the currents
induced therein. Both cases have a number of common parameters, primarily the properties of
the rolling magnets (radius, thickness, magnetization) and plane inclination.

As the main actors of our investigation were magnets, we had to be very careful when
choosing them. We decided to work with three different disc magnets made of Nd,Fe 4B, a
permanently magneuc sintered ceramic material having a magnetization field of 1.4 T and a
density of 7500 kg/m’ (measured). These magnets have excellent magnetic properties {large

magnetization, stability) while being readily available, which made them ideal for our
research.
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2. The Nonconducting Incline.

In this first, simpler case, we will explore the effects of the Earth magnetic field on a
magnet as it rolls down a nonconducting plate. Unless the plate is so set up that the magnetic
moment of the magnet poinis north all the time, the torque the Earth field 1s causing will
deflect the magnet towards the North direction. As a very simple experiment may reveal, the
curvature of the resulting trajectory will mainly depend on the plane inclination, the initial
angle between magnet and Earth field direction and the parameters of the magnet, such as
mass and dimensions. This makes good physical sense; the larger the plane inclination, the
larger the downward — pulling gravity component will be, increasing the downward velocity
component of the magnet and decreasing trajectory curvature. Also, the larger the initial angle
between the magnetic moment and the Earth field, the larger the torque will be, resulting in an
increased curvature. The mass influence 1s also quite understandable ~ for heavier magnets
the influence of inertia will be greater and the curvature smaller. To obtain an exact analytical
representation of the trajectory we need to write the equations of motion for a circular magnet
(of radius R, thickness D, density p and magnetization M) under the influence of gravity and
the magnetic field of Earth. To facilitate this task we will have to introduce some
approximations. First of all, in order to always have the magnet in rolling motion we will limit
the considerations to small inclination angles, which means that we may neglect the influence
of the vertical component of the Earth field and consider only the constant horizontal
component. Due to the homogeneity of this field we can approximate our magnet with a
dipole of magnetic moment ¢z =MV, where V is its volume. Second, we must define our

coordinate system. We will see that the stmplest calculations are obtained 1f the xy - plane
coincides with the plane of the incline and the z — axis i1s perpendicular to that plane; this
means that initially the magnet is seated on the x — axis, 1ts magnetic moment pointing along
the y — axis. The rolling acceleration can easily be found:

2
a=-——§g51n(051n15‘ (1)

where g is the acceleration of gravity, ¢ the angle of inclination and @ the angle between the
magnet's direction of motion and the x - axis. This acceleration we know to be equal to the

second time derivative of the magnet path, 5, with dx=dssind and dy =dscos?. These

facts will enable us to obtain the trajectory equation. The angle & will be obtained from the
second influence on the magnet, the Earth field torque:

18 =-{1B, sin(s- ) (2)

Where 7 1s the moment of inertia of the magnet, ¢ its magnetic moment, Br the horizontal
component of the Earth field and £ the angle between this field and the x - axis. We see
immediately that the further treatment of these coupled equations of motion becomes very
simple if =0, while if this is not the case matters get a lot more complicated; therefore we

will first make a simple calculation for this spectal case. After inserting (2) into (1) and
integrating we see that

7 o<
ds == 830 159 (3)

3
4B

magnet equals zero. The trajectory equation can simply be obtained by noting that

where the parameter @; stands for ~, and we have taken that the initial velocity of the

dy . .
-d-}; = —cot ¢ and combining this with relation (3):
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y=- 2gsing jcos ddv+C (4)
3 w;
where C 1s a constant of integration we will determine from the fact that the y — coordinate of,
the magnet position is initially equal to zero, while the x — position is an initial x. In the end
one obtains the trajectory equation |

— -

2 gsing 4 mé- : ,
= I- x=x,f ~1
773 @ \ Q[gsin(o] (=) ()
Taking a closer look at this relation wr: see that the trajectory 1s in fa;t a portion of the circle:
(x-x,) +(y-r) =r* with radius 2 gsng ' This i1s a fact well substantiate&?
w; _

experimentally. However, this derivation was made in the limiting case =0, a complcte

treatment would call in for numerical techniques, necessary for solving the nonlinear coupled
system (1) and (2) in the case [ > 0. The calculation is rather cumbersome but in our opmu)n

less physically appealing — the considered special case seems to catch all the main features of
the etfect. Rewriting the radius as

r= R* pD (6)

where R 1s the magnet radius, D the thickness and p the density of the magnet, we see that it
increases as the inclination angle grows, as we have predicted before from elementary
considerations; also, we see that the radius strongly depends on the inertial properties of the
magnet, increasing with increasing magnet radius and density, in agreement with our previous
conclusions. We might say that altering the angle £ would have no significant effects on these:
dependencies; 1t would merely change the path a bit due to the more complicated geometry
involved. |

The measurements on a nonconducting plane were quite simple to conduct, aside from
some matters requiring greater attention. The main problem was 1nsulating the magnet from
all parasite fields due to wiring and the many iron parts in a laboratory. To minimize this
influence our incline construction used no metal parts and was set as far away from iron
pieces as possible. The incline itself (a wooden plate with a sheet of white paper glued to the
measuring side) was standing on a wooden box so as to be separated from the wiring and
metal tubing or constructions in the floor. In order to obtain the magnet trajectory we soothed
the magnet we worked with so it left a trace on the paper glued to the wooden incline. The
measurements were repeated for several inclination angles, yielding the predicted circular
trajectories (fig. 1.).
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3. The Conducting Incline.

3.1. Theory.

This second case is, as we have mentioned in the beginning, by far the more
interesting and complicated situation. This is due to the fact that a moving magnet, sliding or
rolling, causes a local change of magnetic field flux in the conducting material, which gives
rise to induced currents. These currents are again time — changing, inducing secondary fields
‘which in turn induce ternary currents and so on. The net resulting induced field in the material
is the sum of all these fields. This field interacts with the rolling magnet causing a backward
force (it the magnet is far from the plate edges) or even torques and lateral forces (if the
magnet 1s close to an edge, the induced field will be asymmetric, causing lateral effects)
which result in a curved trajectory. Ailthough the given explanation based on simple induction
arguments sounds quite simple, the calculation of the induced fields and forces acting on the
magnet is a very difficult task, for the more complicated magnet-near-edge case almost
impossible. In spite of this fact, we have managed to develop an analytical theory for a
magnet on a metallic plate far from its edges, and even succeeded in calculating the
asymmetric field forming in the near-edge case. However, the calculation of the magnet
trajectory in this situation still proved too difficult, so we only give a qualitative description of
this. We start with the simpler case of a magnet rolling down the plate far from its edges; here
the induced field acts only in the direction opposite to the magnet's direction of motion,
greatly simplifying the underlying mathermatics. There is one important point to make, thus;
this case can only be observed if all asymmetry is removed from the system, implying that the
influence of the Earth field torque must be ruled out as well; this is done by adjusting the
incline-magnet systemn in such a manner that the magnetic moment of the magnet points
North. This 1s quite a source of expennmental difficulties, as we shall see. So 1solated from all
deflecting effects, the magnet on such a ,,quasiinfinite” plate will follow a linear trajectory.
Furthermore, as the force due to the induced currents turns out to be quite large (and of course
velocity - dependent), the magnet reaches a terminal velocity after a short period of
acceleration. This means that for the largest part of the motion the induced field doesn't vary
in time but for traveling along with the magnet with constant velocity! In the magnet
reference system, however, the field is stationary, which simplifies calculations a great deal.
In order to find the force the induced field exerts on the magnet, we must first consider the
structure of the magnet. In the treatment of the motion on a nonconducting plate we were able
to regard the magnet as being a dipole; this was possible because of the homogeneity of the
Earth field influencing the magnet motion. In this case, however, we cannot use that
approximation due to the fact that the induced field is very close to the magnet and
inhomogeneous. This means that we must take a more detailed model of a disc magnet to
work with. A pretty realistic model, which suits our needs very well, may be obtained by
taking the magnet to be analogous to a solenoid, i.e. consisting of an infinite number of
infinitesimal dipoles each having the dipole moment

dm = MR’ mde (7)
where M is the magnetization of the material, R the magnet radius and de the infinitesimal
thickness of the dipole. The force exerted by the induced magnetic field on a dipole is
generally

Where B, is the induced field vector and x,, y., and z, the coordinates of the dipole. The force

on the whole magnet is obtained by simply summing the forces on all dipoles, i.e. integrating
eqn. (8). To be able to perform this integration (and, of course, to find the induced field) we

('l-h'.' ' -TH.' -'IIJ‘. }
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have to define a coordinate system. The most smtable will again be the one used in the first
part, with the xy — plane coinciding with the plane of the incline and the z — axis pointing
vertically upwards, but this time we will take it to move along with the magnet. The magnet is
standing on the x — axis, and the magnetization vector points in the y ~ direction (fig. 2).
Using this configuration we can easily deduce the coordinates of each of our tiny dipoles and

perform the integration:

D
+—

F = R*72|M] ﬂVB. de 9)
D

(0,£.R)

where D is the magnet thickness and B;,, the y — component of the induced field. Now that we
know how to obtain the force on the magnet from the induced field, we are left with the task
of calculating this field. Now that's the real difficuity. To perform this task we have to start
with the general system of Maxwell equations in a conductive medium and try to solve it for
the induced magnetic field. We will take the induced electric currents to be strictly sourceless,
and bear in mind that the net field in the material is in fact the vector sum of the induced field
and the constant field of the magnet. The initial equations we will write 1n a reference system
attached to the incline, denoted by primes and equivalent to the system defined in the first part
of the work. The Maxwell system (eg. [2]) becomes

JB
VXi=—0—
} Jt

. JHHEIJ Ej
if -] ar

Vij=0
ViB, =0
where j is the current density vector, o the conductivity of the material, B=B. + B, the net

field (the sum of the induced and magnet fields), and ug and g the permeability and
permittivity of the vacuum, respectively. It must be noted that this system is valid only 1nside
the conducting material; outside it the conductivity drops to zero and no currents can flow, but
an induced field caused by the currents in the material exists everywhere in space. This fact
we will build into our solution, as we shall see later. The first great simplification we are to
make in solving the system (10) will be transforming to the inertial system of the magnet,
which is moving relative to the inclined conducting plate with constant velocity v. After
employing a simple Galilean transformation and evaluating the time derivatives by the chain
rule we get an equivalent system for the fields and currents in the (unprimed) system of the
magnet:

JB

VXj=-~0ov—

) ox

. MoEyY ]
VxB. =
n Jul'h] o a_l' (11)

V.j=0
V.B =0

with the space coordinates now referring to the moving reference system. Now for metallic
inclines, which we exclusively made experiments with, the conductivity is very large, the
induced currents become strong as well and the velocity is small, typically a few centimeters
per second. This leads to the conclusion that we may safely neglect the rightmost term 1n
equation two of the system — it is much smaller than all other terms. The obtained simplified

| (12)
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system is now ready for manipulation; the current may be eliminated in a few transformations
and one gets the whished-for equation for the induced field:

0B, __ 3B,
ax Ho ox

We have written it so as to separate the terms involving the induced field from the terms
involving the constant field of the magnet; in this way we can immediately see that this field
in a way acts as a source for the induced field. This of course makes good sense because 1t 1s
just the change of flux of this magnet field in the material which causes the induced currents
and fields. The simplest way of solving this equation will again use the fact that velocity 1s
quite small and that the induced field is a lot smaller than the field of the magnet (this fact we
will verify a postenon) These facts enable us to write the solution By, as a power series in the

factor & = U,0V

VB, + u,0v-—-

B. =B ¢+B.E7 +... (13)

which will converge fast if £ is small enough or if the functions B; give rapidly diminishing
values for increasing i, in the region under consideration. These conditions aren't always
simple to test, and we won't make a formal proof of the rapid convergence; as we shall see,
the experimental results confirm it. Inserting this power series into the equation for the field

(12) and equating the terms containing ¢" we get a system of equations for the functions B;:

v'B, = -2
ox

14

V°B, _-9B U
- ox

This system is very handy because once we have obtained the first function B, the higher
order terms follow immediately. Each of the equations is a simple Poisson — type equation,
easﬂy solved; the net induced field is obtained by summing:

R ﬂﬂ IBB dxd} ‘dz’ ,UHO"V“ H-BB dxdy dZ dx dy "dz”
§ > r-r] 167 r-r] |r- r"

. (15)

where the primed and double — primed coordinates are parameter coordinates and the spatial
integration only goes over the region containing the conductor (this is easily explained; only
in that region can currents exist, and they serve as sources for the field). The integrals in the
series (15) are practically impossible to calculate analytically, so we will have to use
numerical methods, but first we will again use our approximation of small velocity. If the
magnet is slow enough the powers of v will become increasingly smaller and the contribution
of the higher order terms can be neglected, leaving the approximate expression

_ Hyov OBy, di'dy’dz’
A 1;[ ox’ |r-—r1 (16)

which is linear in velocity and conductivity. These linearities have been fully experimentally
confirmed, justifying the approximation for the magnets and plates we used. To perform the
integration and calculate the force on the magnet we must derive the constant magnet field
first; this is again done by regarding the magnet as an assembly of very thin dipoles and
adding their fields to form the resultant field. The integration for the induced field was
performed numerically to give the field everywhere in space; on fig. 3. and 4. we have shown
only the y — component because of its importance in the force calculation (it is also the largest
component; the scale is always in mT). Fig. 3. shows the field on the plane y = 0 and fig. 4. on
the plane z = -0.0025 m, that is, on a plane 2.5 mm under the surface of the material; the
conducting plate has no bounding planes except y = (, stretching to infinity in the x, -x, ¥, -

in
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and —z directions. The magnet centre of mass has the coordinates (0, 0, 5.5 mm). The shape of:
the field already makes sense; we see that there are two regions of maximum field under the:
magnet forming two ,images” of its own field, the left image pulling and the right one
pushing on the magnet, creating the observed force. Also, the highest field values are of the
order of 0.15 mT (for a magnet of radius 5.5 mm and thickness of 5 mm), while the field of
the magnet is in the range of 0.1 T; as we supposed, the induced field is much smaller. The

force on the magnet can now easily be calculated from eqn. (9) inserting the induced field
(16); if will be of the form

F,=-Aov |
with v being the magnet velocity, ¢ the conductivity and A a numerically calculated constant
involving the gradient of the integral in the field expression (16). The values of this parameter
for our three magnets will be compared to expenmental values. The calculations were
performed with a 0.1 mm parameter coordinate step in a cubical region V' with dimensions
7x7x7 cm, on a DOS - based platform in Turbo Pascal 7.0. |

The obtained linear form of force is of course valid only for small velocities. If we

apply that force to the case of the magnet rolling down an incline it becomes clear that the

terminal velocity is reached when the resistant force equals the gravity component pulling the
magnet downwards, what leads to |

—ég—smga (18)

oA\
where vris the terminal velocity, { the magnet mass and ¢ the inclination angle. This velocity
s easy to measure and will be the principal parameter explored in the experimental part.

Now that we have thoroughly analyzed the case of a magnet rolling down the plane far
from its edges, we must say something about the second, more complicated situation:
boundary effects. When the magnet comes near to an edge the induced currents will loose
their symmetry, causing additional forces to act on the magnet; a field gradient in the
direction perpendicular to the magnet direction of motion can occur, causing a lateral force
(fig. 5., the magnet and its position are the same as before), and if the magnet approaches the
edge with a finite angle the normally vanishing lateral field component may become
noticeable and cause a torque. Both influences deflect the magnet from the edge, and the
trajectory becomes curved in its vicinity. The effect is very striking, as some of our trajectory

measurements will show.

3.2. Experiment.

The experimental work for the magnet-on-conducting-plate problem was mainly
focused on the first, simpler case of a magnet moving far from the plate edges; we wanted to
explore the influence of the induced field and test our theoretical model. The parameter
measured was always the terminal velocity. We made several measurements varying three
main parameters: plate inclination, plate conductivity and magnet size (the dependence of
terminal velocity on inclination was determined for two different magnets). Our incline was
an aluminum plate 1.0 cm thick and 13.5 cm wide, and its conductivity was changed by
cooling 1t to several temperatures; we will discuss this matter in detail later in the text. Its
room temperature conductivity was measured to be 29.85 MS. The magnet velocity was
measured using a system of two (and sometimes three) small solenoids connected in series, a
fixed distance (mainly 19.0 cm for the two-solenoid system) apart (fig. 6. and 7.). The passing
of the magnet was detected by recording the induced voltage in the solenoid system. The
distance in time of the two voltage peaks provided a very precise means for determining the
velocity of the magnet (fig. 8.). The voltage was read with an AD converter at a rate of about
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10000 samples per second and transferred to a computer. A third solenoid was occasionally
“added halfway between the existing two to check if the magnet was really moving with
constant velocity; the time difference was less than 1%, so we were able to conclude that the
velocity was indeed uniform.

The first, less complicated set of measurements consisted of determining the
dependence of the terminal velocity on inclination angle for two different magnets. Figures 9.
and 10. show the dependencies; the magnets had diameters of 2.54 cm and 1.00 cm and
thicknesses 2.54 cm and 0.50 cm, respectively. We see that the dependence on sin ¢ is linear,

just as predicted. From the measured linear functions we were able to obtain experimental
values for the constant A and compare them to theoretical values: for Magnet 1 the
expenment yields (53.2 £ 0.2 )- 107 kgs 'S while the theoretlcal value is 52.8(4)-10” kgs 'S

! and for Magnet 2 the experimental value is (1.21 £ 0.2 )-107 kgs 'S the theory giving
1.19(3) 107 kgs'S™'. We see that the agreement is excellent, although we believe that even
better numerical results could be obtained by using finer integration steps and accounting for
~ the higher order corrections 1n eqn. (15). The linearity of the obtained dependencies also fully
Justlﬁes our first order approximation.

The second, more demanding part of our experimental work focused on the
dependence of terminal velocity on plate conductivity. The desired conductivity change was
obtained by putting the plate in a heat — insulating container, cooling it down to liquid
nitrogen temperature and letting it warm up slowly, measuring its temperature. At more or
less constant temperature intervals the magnet was released and the terminal velocity recorded
with the solenoid system. Figs 11. and 12. show the incline in the box and solenoids
schematic and photograph. The box, made of polystyrene blocks, had a removable cover with
two holes in it; one containing the magnet release mechanism and one (with a plug) for taking
the magnet out. The box was always closed in order to create a cold atmosphere inside and
prevent the formation of ,,snow" on the plate. A hquid nitrogen bath was placed underneath
the incline, and the plate temperature was measured by recording the resistance of a long thin
copper wire glued to the plate. Wire resistance was measured to a very high precision using a
lock — in amplifier, and the plate resistance was calculated from the temperature. By using this
apparatus we were able to obtain plate temperatures ranging from 73 K (nitrogen boiling
point) to approximately 190 K (above that temperature the warming up of the plate became
too slow for conducting measurements in a reasonable time span), corresponding to a
conductivity range of 37 to 200 MS. Throughout this range the dependence of terminal
velocity on 1/6 remains linear, just as the theory predicts (fig. 13.). Bearing in mind that the
angle of inclination was held at a constant 28.5 degrees we can once more obtain an
experimental A for the magnet used in this experiment; one gets ( 2.97 £ 0.2 ). 10” kgs IS '
For a magnet diameter of 0.95 cm and a thickness of 0.63 cm the theory gives 2.95(2)-10 9
kgs''S!. Again agreement is very good, although we may once more notice the slight
theoretical underestimation of A already encountered in the first part of the experiment. This
underestimation might be caused by the imperfections of the numerical integration process or
by an error in determining some of the parameters of the apparatus (e.g. solenoid distance).

Al our quantitative experiments were performed with a magnet following a straight
path on the plate, but due to the spectacularity of the boundary effects we decided to make
some investigations concerning them too. The magnet we used had a diameter of 0.95 cm and
a thickness of 0.63 cm, it was released close to an edge and photographed every 1/30 of a
second from above. A scale meter was put next to the plate in order to enable trajectary
determination. The obtained trajectory is a lot like a sine, due to the deflections at the
boundary (fig. 14.), just as we expected. However, the exact theoretical determination of this
trajectory remains out of the scope of this work due to inhérent mathematical difficulties,
although we believe that in principle it is possible.
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4. Conclusion.

Our work on the problem of a magnet rolling down an incline, both theoretical and
experimental, leads to several conclusions. Firstly, the problem of a rolling magnet, as
opposed to a sliding motion, can be much more rewarding and interesting; as far as we know,
there has been no comprehensive treatment of it up to date. We have shown in our
Investigation that a relatively complete analytical treatment giving results in good agreement
with experiment is possible in this case (except where boundary conditions are concerned; we
suspect that numerically solving the Maxwell system is the only option there). The effects on
a conducting inchine can serve as a dramatic and rarely seen demonstration of the influences
of eddy currents on a magnet, and the motion on a nonconducting plate can, among other
things, be used as a compass (the magnet always turns north!), or for measuring the Earth
magnetic field.

Although our model describes the obtained experimental results rather well, there is
always more to do to make things even better. For example, by calculating the higher order
terms in the induced field equation, the accuracy of the theory could be improved. We have
also thought of many additional expeniments that could be performed in order to thoroughly
test the theory, like determining the dependence of the drag force on the distance between
magnet and plate. It would be very interesting as well to find a method for imaging the
induced field itself; there are indications that it might be detected by our solenoid system (if
the dominant signal from the magnet’s field was removed), but we haven’t gone into trying
anything of the sort. We hope that in a future experiment we will manage to think of an
effective field imaging technique as well. With the mentioned ad ~ ons included, we might
say that the problem would be rather thoroughly solved.

We thank dr. sc. Mladen Prester of the Institute of Physics for the liquid nitrogen,
Hrvoje Mesi¢ from the Faculty of Science for the aluminum plate, dr. sc. Djuro Drobac from-
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our work.
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Figures:

Fig. 1. -- Magnet trajectories for three different angles

Fig. 2. The coordinate system, with denoted drag force and magnetization vector
Fig. 3. The induced magnetic field on the plane vy = 0.

Fig. 4. — The induced magnetic field on the plane z = -0.0025 m
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Fig. 5. — The induced magnetic field at the edge, on the plane z =-0.0025 m. The plate
boundary is at y = 0.005 m.

Fig. 6. — The magnet velocity measuring system schematic.
Fig. 7. — The apparatus for inclination angle variation measurements
Fig. 8. — Voltage peaks induced in the solenoids by a magnet passing

Fig. 9. — Dependence of terminal velocity on inclination angle (its sine is propotional to the
plate end height) for Magnet 1.

Fig. 10. — Dependence of terminal velocity on plate end height for Magnet 2.
Fig. 11. — The apparatus for changing plate conductivity.

Fig. 12. — The box, incline and solenoids ready for use.

Fig. 13. — The dependence of terminal velocity on 1/conductivity

'Fig. 14. — The magnet trajectory, boundary efects included.
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9. Problem Nel2: Rolling magnet

9.2. Solution of Croatia

9.2.1 Review of solution of Croatia

Review of the solution of the problem number Nel2: Rolling magnets

Croatian team presents very detailed explanation of the phenomenon and very clever
experiments.

Firstly (chapter 2) the problem of the magnet’s motion on a non-conductive plane 1s analyzed
and discussed. Using relatively simple calculations were they able to calculate the trajectory
of a rolling magnet influenced by Earth’s magnetic field. Under certain conditions is the
trajectory circular, which agrees with experimentally observed results (Fig.1). The agreement
is very good although some effects (e.g. friction forces) were neglected. Experimental results
demonstrates that main factors influenced the magnet’s motion are the gravitation force,
magnetic force and the magnet’s momentum of 1nertia.

In the chapter 3 authors analyze the magnet’s motion on a conductive plane. The qualitative
explanation of the phenomena is simple and was done well in the first paragraph. The
analytical solution of the problem is complicated and exceeds the high-school level. It is clear
that the team have used consultations on a university. The solving of Maxwell’s equations is
based on some results from scientific papers and at the end the equation (17) was dernived. In
my opinion, the equation (17) can be obtained from pure qualitative analysis of the problem.
The main result of the heavy calculations is the theoretical value of the parameter A obtained:
from the magnetic field configuration near the magnet. This field was calculated numerically
and the induced currents were calculated using numerical integration. The theoretical values
of the A-parameter fit very well with experimental ones, but it 1s not clear which parameters
were fitted during numerical modeling of the magnetic field around the magnet (e.g.
permeability of the magnet). |
The presented experiments are very clever and well done. The first set of experiments
(changing of the inclination angle at room temperature — Fig.9 and 10) can be performed in
high school laboratories. The next set of experiments, changing the conductivity of the
aluminium-plate by its cooling using liquid nitrogen, were probably realized on a university -
the fock-in amplifier used is not a common apparatus. The results (fig.13) clearly demonstrate
the linear dependence of the breaking force on the magnet’s velocity that agrees well with the
equation (17).

Conclusion: the Croatian team presents a nice solution based on a deep theoretical analysis of
the problem and their expennmental work. They were successful as well in searching for an
expert and in communication with him.

Reviewer — Frantisek Kundracik
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