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The Problem: 
Propose and make a device for measuring the charge density on a plastic ruler after it has 
been rubbed with a cloth. 
  

 
Abstract 
 
    We present a computer numerically controlled surface charge density analyzer for 
measuring mono-layer surface charges in medium resolution on dielectric surfaces. The 
device is based on a solid state FET electrometer coupled with an optically referenced 
electrostatic mill enabling accurate phase-locked measurements. The scanning and control are 
obtained with a two-dimensional computer controlled discrete step translator capable of 
delivering up to 20 steps per second. The device was demonstrated in a measurement of the 
surface charge density on a plastic ruler rubbed with a cotton cloth. 
 
1. Introduction. 
 
    The problem of non - contact charge measurement on different dielectrics is of greatest 
interest nowadays. From microscopic applications to atmospheric electricity recording, charge 
detectors of various designs are implemented. In this article we will discuss the construction 
of such a device, intended for measurements in the medium resolution range (that is, neither 
atomic – scale nor large charge structures like atmospheric electricity), intended for 
measuring the charge density of a flat charge monolayer on a dielectric surface. We will 
demonstrate its action in a measurement of the charge accumulated on a plastic ruler rubbed 
with a cloth, a system being very favorable for testing the device resolution and precision due 
to large charge gradients on a small surface area. But before we proceed to the description of 
the device, we must note some general characteristics our charge detector should have; in the 
end we will see how many requirements we have fulfilled. First of all, the spatial resolution 
for the suggested application should be at least a few millimeters due to the large gradients, 
and better if possible. The charge measurement resolution isn’t as critical; the charges 
normally accumulating on a ruler can be quite large, as we shall see. Anyway, a higher charge 
resolution means a more reliable device. The third important parameter is the time the 
measurement takes. We will find that charge continuously drifts away from our ruler; this is 
unavoidable except by putting the entire device in an inert atmosphere or vacuum, which was 
too complicated for us to do. Although the drifting can be minimized by several techniques 
(to be discussed), a fast measurement is necessary. As our device will in fact be a scanner, 
moving across the ruler surface and measuring local charge density, we must be careful to 
minimize the number of needed scanning steps to shorten the measurement time, while 
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retaining an acceptable spatial resolution. We will discuss these matters in more detail when 
we get to the actual device construction.  
 
2. The Ruler. 
  
    As we have mentioned, our charge analyzer will be used on a charged plastic ruler. Our 
ruler was made of polymethilmetacrilate and was 15 cm long and 3 centimeters wide. The 
charging of a ruler by rubbing it with a cloth is a high school demonstration in electrostatics, 
and there is a number of charge detection (not measurement!) methods suiting it. The most 
common are different electrometers based on charge – metal needle repulsion, and charged 
powders (like sulphur) clinging to the charged regions of the ruler. However, really 
measuring the charge density distribution with a reasonable spatial resolution is a 
considerable difficulty. Even more complicated is the process of charging; why are electrons 
transferred between cloth and ruler surface, and what sign will the net charge on the ruler 
have? The answer to these questions has to do with intermolecular forces on surfaces, 
delocalized electrons in the fabric and on the plastic, dielectric polarization and so forth, and 
we will not go into tackling with it. Even the sign of the charges is not uniquely determined; 
we have measured both positive and negative charges on one and the same ruler, which was 
quite a surprise. The important fact is that once the charges are deposited on the ruler surface 
they basically do not move. This is due to the fact that the ruler is a dielectric, meaning that it 
has a huge electrical resistance and no current can flow either inside it or on its surface. 
Another important consequence of this is that the charges will always stay on the surface and 
never penetrate the material; thus we can rightly speak of a monolayer. However, in practice 
the conductivity of the ruler surface usually isn’t nearly as small as one would expect, mainly 
because of the grease and dirt deposited on the ruler when it is handled. This can cause 
significant charge drift and make measurements rather inexact. To minimize this effect the 
ruler needs to be degreased thoroughly (we rinsed it in ethyl alcohol several times before 
every measurement) and put on nonconducting stands (in our case degreased ceramic 
cylinders). In this way the charge drift can be slowed down considerably, though it can never 
be completely removed – there is namely a second source of drift, humidity in the 
atmosphere. Due to the polar nature of the water molecules in air the charges on the surface 
may cling to them and escape the ruler. This drift is very difficult to remove; in all of our 
experiments the air was constantly held dry (humidity under 20%), but a certain drift was 
always present. However, the charge didn’t change as rapidly as to influence the measured 
results significantly, as we managed to get the scanning time down to a few minutes.  
 The rubbing process itself was devoted special care. With a clean cotton cloth the ruler 
was rubbed exquisitely at one or two localized spots, the rest remaining more or less 
untouched. In this way we created regions of large charge density and steep transitions to low 
– charge regions; this enabled us to test the capabilities of our detector. A good device should 
be capable of reconstructing such configurations in detail. 
 
3. The Device. 
 
3.1. Principle of measurement. 
 
    The number of charge measurement principles and devices developed to date is enormous, 
and each has its advantages and drawbacks. Some of the most common are the Kelvin and 
vibrating capacitor probes [1] (for medium spatial resolution), cantilever – based systems [2] 
(used in atomic force microscopes, measure the force on a charged tip with atomic – scale 
spatial resolution), the already mentioned crude electrometers used in demonstrations, solid 
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state electrometers [3] of various designs, and many more. Our device used a combination of 
a so-called electrostatic mill and a solid state electrometer. The electrostatic mill is a movable 
grounded plate, periodically covering and uncovering the electrometer’s detector lead. In this 
way the electrometer is only exposed to the field it measures for short periods of time, 
yielding an alternating signal. If the phase relationship between the mill oscillations and the 
periodic electrometer signal is established, one can perform phase – locked measurements to 
eliminate virtually all noise. Thus the field can be measured to a very high precision. 
However, there is another vital element in the construction of our device, namely the scanning 
system. The mill, electrometer test lead and phase reference measuring system were all 
mounted on a compact probe, which had to be moved across the ruler surface in order to scan 
the charge density distribution. This was done with a custom made xy-translator, controlled 
electronically. In the following sections we will describe these parts one by one, in order to 
gain insight in the construction and operation of our apparatus. 

  
 

3.2. The Probe. 
 
    The probe, being the core of the system, requires special attention. As we have mentioned, 
its main parts are the electrostatic mill, electrometer test lead and phase reference measuring 
system. All those elements were mounted on a large grounded metal plate which provided 
shielding and a homogeneous field in the perpendicular direction (Fig. 1.). The mill, as the 
only moving part, required precision; it consisted of a conducting thin disc (made of paper 
covered with a conducting graphite film) with three holes cut in it, attached to a small DC 
motor (similar to the ones used in mobile phones for vibration). The mill (or ”chopper”, as we 
refer to it) is shown in Fig. 2. It rotated with a frequency of about 80 Hz, providing a 
convenient modulation of the electrometer signal. The electrometer itself was based on a FET 
(short for field effect transistor), which is a semiconductor device consisting of a long slab of 
n – doped material (through which a current is set to flow) and two smaller sheets of p – 
doped material located on opposite sides of the n – slab. If leads are connected to those sheets 
and put in an electric field, charges in the sheets are dislocated, effectively altering the volume 
(and thus the resistance) of the n – doped slab (Fig. 3.). This means that one can determine the 
strength of the field by measuring he current flowing through the n – slab! It is clear that the 
resistance between the points A and B in figure 3 is enormous (ideally infinite), meaning that 
charges aren’t lost from the test leads but respond only to the outside field. However, the 
problems arising to instabilities and noise when using a sole FE transistor made us choose the 
FET amplifier LMC 6062 instead. The principle of operation remains practically the same. 
The amplifier was connected to be noninverting, with a gain equal to unity and with a low – 
pass RC filter at the input to serve as a first, crude noise removal facility. The entire circuit 
was closed in a grounded metal box shielding it from outside influences (Fig. 4.), while the 
test lead consisted of a copper disc 1 mm in diameter, mounted in a fitting hole in the probe 
grounded plate. The third vital part of the probe was the phase reference. It had to feed an 
appreciable signal to the used lock – in amplifier in order for it to be capable of comparing 
phases. We used a simple photodiode (the bright spot in Fig. 2.); the signal from it was 
smaller when it was covered by the dark chopper and larger when a hole was under it. The 
frequency of the signal was of course equal to the chopper frequency. However, the signal 
offset (due to the constant light always falling on the diode) had to be removed, and the 
alternating signal amplified. This was done with a LM741 opamp with adjustable gain, 
followed by a passive high – pass filter for removing the offset. The amplifier and its circuit 
were enclosed in a grounded box as well.  
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    Once having the two signals, measurement and reference, we fed them into a lock – in 
amplifier in order to remove noise. As the phase relationship between the measurement signal 
and the reference was always constant, a phase – locked loop could do a good job removing 
all out-of-phase or wrong frequency noise, and the resulting signal was very clean and stable. 
With such noise removal we were capable of measuring the voltage from the FET amplifier 
with nanovolt precision. As we will see, this amounts to a charge measurement sensitivity of 
about 10 or even 1 nC/m2, while the typical charge densities on the ruler are of the order of 10 
µC/m2. 
 

 
3.3. Scanning and Control. 
 
    Having constructed the probe, we were left with the task of building a device which would 
move it across the ruler surface in order to obtain a charge density map. The general 
requirements for such a system we have mentioned already: high spatial resolution and speed. 
Another problem is the synchronization with the measuring system; this we solved by putting 
one single computer in charge of both. The translator itself was built from the remains of two 
used printers (one printer for the x and one for the y direction) and driven by two unipolar 
stepping motors. Driving the motors in accordance with directions given by the main 
computer was entitled to a microcontroller mainboard. The mainboard was a complicated 
circuit containing two 8051 microcontrollers clocked at 12 MHz, communicating with the 
computer via a serial link. Communication proceeded both ways, enabling precise scanning 
control: the computer collects a number of signal voltage values from the lock-in (using a 12 
bit AD converter) and forms their average (that is another low – pass filter!), and then orders 
the mainboard to move the probe to the next measuring position. When the mainboard reports 
that the probe has moved a new set of voltages is collected, and so on. The schematic of the 
entire apparatus is given on Fig. 5, and a photograph on Fig. 6. The spatial resolution was set 
to 1 mm, and the device was capable of delivering up to 20 measurements per second. 
However, to use it we had to perform calibration. 
 
3.4. Calibration. 
 
    To be able to measure the charge in absolute units (like C/m2) we had to calibrate our 
device in a known field. This was done as follows. An aluminum disc, having a surface much 
larger than the test lead, was held at a constant, known potential V. The probe was put above 
it, at a height D. The probe grounded plate thus created a charge image of the disc, the system 
being equivalent to a capacitor at voltage V and plates D centimeters apart. Due to the fact 
that both the probe plate and the charged disc were much larger than the test lead (or the 
distance D, for that matter), the field at the test lead location was almost homogeneous, with a 
vertical component 

D

V
Ez =  

Now the root-mean-square voltage measured from the detector, URMS, we found to be 
proportional to E over a large voltage range (Fig. 7.), following the relationship 

RMSz UE 61088.1 ⋅=  

We were able to distinguish between positive and negative charges thanks to the phase-locked 
measurement method; the photodiode always gives the same signal, but the phase of the 
measurement signal is reversed when measuring different signs of charge. This means that the 
sign of the measured signal will correspond to the sign of the charge. It is also very important 
to note that only the z – component of an electric field can influence the test lead due to the 

(1) 

(2) 
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grounded plate; it creates a mirror image of the charges measured, thus virtually eliminating 
lateral components. Also, the test lead is a thin disc, so lateral charge displacement in it 
shouldn't have a significant effect on the FET.  
Having performed the calibration, we were ready to make field scans of the ruler and 
calculate the real charges from the measured field. This was also a troublesome task, due to 
the fact that the distance between probe and ruler was always kept at 5 mm; this is a large 
distance compared to the sensing lead disc, which means that a relatively large charged area 
influences the signal. To maximise the spatial resolution in charge determination we will have 
to solve a system of equations for the charges; we will return to that issue in due time. 
 
 
4. Measurement and Charge Calculation 
 
    Before conducting charge maps measurements, we had to check how fast the charge was 
leaking off the ruler and how this could influence our scans. Two static measurements were 
performed, one with the ruler uncleaned and one with a degreased ruler (Fig. 8.). The probe 
wasn't moving during one measurement. The results are striking: the dirty ruler looses charge 
at a large pace (70% in five minutes), while upon degreasing it the loss is brought down to 
about 10% during five minutes! As the scan time was about three minutes, the losses during 
scanning could be neglected. However, if a necessity for high precision is shown one can 
always compensate for the loss using the curve on Fig. 8. 
    Measuring the charges on the ruler was conducted for two rubbings; the first measurement 
had 5796 and the second 4991 one-millimeter steps. As we mentioned already, the distance 
between detector and ruler was held at a constant 5 mm. The obtained field maps are shown 
on Fig. 9. After determining the field maps, we had to calculate the real charge. This charge is 
easy to find if we divide our ruler into little rectangles, each having a net charge σi; let the 
sides of the rectangles have lengths equal to the step size, and let their number be equal to the 
number of steps N. The field one such rectangle causes at the probe location is simply 
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where rs is the probe radius-vector, ε0 is the permittivity of the vacuum, ∆x and ∆y the side 
lengths of the rectangle (in our case both equal to the step size), ri the radius-vector of the 
rectangle and r̂ a unit vector lying on the line which connects the rectangle and the probe (it 
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(the charge images forming on the grounded plate double the field!) one gets the net field at 
the probe location; the detector is only influenced by the vertical component: 
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where xs and ys are the probe coordinates, h its distance from the ruler, N the number of 
rectangles (and steps) and xi and yi the rectangles' coordinates. The probe makes N steps in its 
measurement, and on each location measures the field (4). In this way we obtain a system of 

(3) 

(4) 
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N equations for exactly N unknown charge densities! Of course, the scanning region has to be 
as large as the ruler so that the N rectangles cover the entire charged surface. The system of 
equations is linear, with an extended matrix of the form 
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with the coefficients ξ equal to 
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As the number N in our measurements was around 5000 (the system matrix thus containing 
tens of millions of coefficients), we had to solve the system (5) with the help of a computer. A 
program diagonalizing the system matrix and solving the resulting triangular form for the 
unknowns σi (Gauss algorithm) was written in Turbo Pascal. The results were charge density 
maps (Fig. 10.), with spatial resolution 1 mm. As we see, the charge on the ruler was typically 
of the order of 10 µC/m2, as we mentioned before; this is quite a large charge density, 
corresponding to a metal plate at potentials as high as several thousand volts. The surprising 
fact is that one can obtain both signs of charge in a single rubbing; the maps clearly show this. 
We suspect that the reasons for this are very complicated and have to do with intricate surface 
effects; a possible explanation would be the repelling of charges on the ruler: if a large 
negative charge is put on the surface it may repel other dislocated electrons. They move away 
from the negative charge, leaving bare protons behind which form a positive patch. This is 
however not quite plausible because of the huge resistance to electron flowing; a very high 
field indeed would be required. A better explanation would probably have to do with the 
rubbing and transport process itself, but the complications are enormous, so we won't tackle 
with it. Our task of measuring the charge density is complete, with rather satisfactory results. 
 
 
5. Conclusion. 
 
    To conclude we will shortly sum up the properties of our device. The charge scanner we 
constructed was based on a solid state FET electrometer modulated with a chopper; the charge 
density distribution on a charged ruler (or similar dielectric surface) can be measured fast and 
reliable. The spatial resolution is 1 mm (this can be made even better, but the scanning time 
grows proportionally), the sensitivity is about 10 nC/m2 (it can also be enhanced by using 
more accurate electronics) and a scan of about 5000 points takes three minutes; the measured 
charge loss during this time is about 5%. We can see that we have more or less fulfilled all the 
desired characteristics mentioned in the Introduction. In the end let us propose an application 
we think is quite amusing: charge writing. If one has a relatively large dielectric plate, writing 
on it with charges is possible with a high voltage tip; if the voltage is high enough a discharge 
through air will deposit electrons on the plate on a small region near the tip. Putting the tip on 

(5) 
 

(6) 
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a xy translator enables one to write or make pictures (Fig. 11.). The writing can easily be read 
with our detector. Of course, a similar process is already implemented in printers and 
photocopying machines: the xerox process! 
 
    We thank our mentors dr. sc. Željko Marohnić from the Institute of Physics for advice, 
discussions and providing the instruments used in measurement, and prof. Dario Mičić for 
support and help with everything. 
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Figures: 
 
Fig. 1. – The probe 
 
Fig. 2. – The chopper. 
 
Fig. 3. – The principle of operation of a FE transistor electrometer 
 
Fig. 4. – The FET amplifier circuit in a grounded box 
 
Fig. 5. – The schematic of the entire apparatus. 
 
Fig. 6. – The entire apparatus 
 
Fig. 7. – The calibration curve. 
 
Fig. 8. – The measurements of charge in time. The detector was static for both curves. 
 
Fig. 9. The field scans. The colour scale is in arbitrary units (volts form the detector) 
 
Fig. 10. – The charge maps. 
 
Fig. 11. – Charge drawing 
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7. Problem №10:  Inverted pendulum 
 
7.1. Solution of Korea 

Problem №10: Inverted pendulum 

Park, Hyeongsu, Korean Minjok Leadership Academy  
1334 Sosa Anheung Hoengsung Gangwon, Korea 225-823  
 
The Problem: 
It is possible to stabilize an inverted pendulum It is even possible to stabilize an inverted 
multiple pendulum /one pendulum the top of the other/. Demonstrate the stabilization and 
determine on which parameters this depends. 
 
    This paper studies comprehensively about the methods of stabilizing an inverted pendulum. 
An inverted pendulum is a free hung pendulum which is upright, and just like an ordinary 
pendulum, it naturally falls downward because of gravity. Thus, the inverted pendulum 
system is inherently unstable. In order to keep it upright, or stabilize the system, one needs to 
manipulate it, either vertically or horizontally.  
    Many stabilizing methods have been developed. In 2-Dimesional system, an inverted 
pendulum can be stabilized thorough either vertical or horizontal oscillation with certain 
frequency. In 3-Dimension, rotational arms or free robot arms are used for stabilization. For 
algorithm, a controller using feedback system or simple oscillation both work to keep the 
pendulum upright, though processes or extents of stability are different from each other.  
    This paper first proposes theoretical background for all the cases. Then, the experiments 
focus on horizontal oscillation and delve into the various characteristics and factors of 
stabilization pattern. 
 
 



 76 

A. Physical Modeling for the Inverted Pendulum 
 
    Mechanics of the inverted pendulum is not different from that of the ordinary pendulum. It 
consists of a rod and a pivot. When you draw a force diagram of inverted pendulum system, 
it’s shown as Figure 1. As seen in the diagram, force is applied to the pendulum’s pivot 
(base). 
    Let m be the mass of a rod, P(x0, y0) coordination of the pivot, CM(x,y) coordination of the 
center of mass, l a distance from P to CM. 
    Two basic motion equations for the pendulum system are 

mgFymFxm yx −== &&&& ,   (1) 

 and 

θθθ cossin xyc lFlFI −=&&   (2) 

 Where Ic is the moment of inertia of the rod with a pivot on CM. 
 

 
Figure 1 Force Diagram of the Inverted Pendulum 

 
 Substitute Equation (1) for Fx and Fy in Equation (2), then we obtain 

θθθ cossin)( xmlgymlIc &&&&&& −+=  (3) 

 Then, from relationship between the coordinate of P and that of CM, 

θθ cos,sin 00 lyylxx +=+=   (4) 

 Thus, 

θθθθ
θθθθ

cossin

,sincos
2

0

2
0

&&&&&&&

&&&&&&&

llyy

llxx

−−=

−+=
  (5) 

 
    Substitute Equation (5) for x&&  and y&&  in Equation (3), then the equation becomes 

0sin)(cos 00 =+−+ θθθ gyx
mL

I p &&&&&&   (6) 

    Where 
2mlII cp +=  is the moment of inertia of the rod with a pivot on P. Equation (6) is 

a universal motion equation for the inverted pendulum, which can also be applied to an 
ordinary pendulum. This equation will be used in simulation which will be later explained. In 
the next chapter, we will use this equation to find stabilizing methods of the pendulum. 
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B. Stabilizing Methods of the Inverted Pendulum 
 
    An inverted pendulum can be stabilized in mainly two ways: simple oscillation and 
feedback control system. The pendulum with oscillating base at certain frequency can stay 
upright without falling down. With a control system, the pendulum’s movement is minutely 
manipulated by the machine to keep it upright. 
 

i) Oscillation 
 
 Oscillation is a possible method for stabilizing the inverted pendulum. Three kinds of 
oscillation are possible : oscillating vertically, oscillating horizontally, and rotating it. (Blitzer 
1965) 
 

a) The vertically driven pendulum 
 
 The inverted pendulum can be stabilized by moving it up and down at certain 
frequency. Mathematically, 

tAyx ωcos,0 00 ==  (7) 

 Then, Equation (6) becomes 

0sin)cos( 2 =−+ θωωθ gtA
ml

I p &&  (8) 

 
b) The pendulum driven in two dimensions 

 

 Here, tAytBx ωω cos),cos( 00 =Φ+′= . Equation (6) becomes 

0sin)cos(cos)cos( 22 =−+Φ+′′− θωωθωωθ gtAtB
ml

I p &&  (9) 

 
c) The rotating pendulum 

 
 The rotating pendulum is the special subcase for the case two, where 

2/,, πωω −=Φ′== AB . In other words, tAytAx ωω cos,sin 00 == . Then, 

Equation (6) becomes 

0sin)sin(2 =−−+ θωθωθ gtA
ml

I p &&
 (10) 

  
d) The pendulum driven horizontally 

 

 In this case, 0,cos 00 == ytAx ω  

0sincos2 =−− θωωθ gtA
ml

I p &&  (11) 

 For small oscillation, 1<<θ , the angle range where the inverted pendulum can be 
stabilized, Equation (11) is simplified into 
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0cos2 =−− θωωθ gtA
ml

I p &&  (12) 

tD ωθωθ cos2
0 =−&&  (13) 

 where 
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 In this equation 
2

0ω  is remarkable because it is an angular frequency of the normal 

pendulum. Equation (13) is a linear differential equation, and the solution for this differential 
equation in terms of theta is 
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 where the angular displacement and the angular velocity of the inverted pendulum at 

t=0 is 0θ  and 0θ& , respectively. 

  
 In order to make the pendulum oscillate, the exponentially increasing term, or the 
exponential term with a positive exponent, should be eliminated. Thus, a should be equal to 
zero, or 

02
0

20000 ω
ωω

ωθωθ E
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+
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 where 2
0

20 ωω
θ

+
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E  

 Then, the final solution for theta becomes 

2
0
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ωω
ωθ ω
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 (17) 

 When t approaches to infinity, theta converges to 

2
0

2

cos

ωω
ωθ

+
−= tD

 (18) 

  

 To conclude, when the pendulum’s pivot oscillates in 0,cos 00 == ytAx ω , it can be 

stabilized with 2
0

2

cos

ωω
ωθ

+
−= tD

. Although theta does not converge into one value, it does 

keep upright while oscillating constantly. The experiments, which will be explained later, 
focus on the relationship between x0 and theta. 
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ii) Feedback Control system. 
 
 Another method to stabilize the inverted pendulum is using feedback control system. 
Feedback control system is the process in which the movement of the pendulum’s pivot is 
continuously fed back based on the pendulum’s physical condition in order to keep the 
pendulum upright. For example, at one moment, when the pendulum leans to the right, the 
base moves fast to the right so that the pendulum becomes upright. Still, the base should move 
in a 

certain force because either too fast motion or too slow motion fails the stabilization. When it 
starts to lean to the left, the pendulum’s base moves left to make it upright again. 
 
 
 
    In definition, feedback control system monitors certain output of the system and 
manipulates its inputs to keep the output near to desired value. As seen in Figure 3, it is also 
called closed loop control system because the output affects the input which again produces 
the next output, repeating the cycle. It has several advantages over an open-loop controller it 
can quickly respond to the possible disturbances or uncertainties and keep the pendulum 
stabilized constantly.  
    In the closed loop controller, the desired output is called the reference. Difference between 
the reference and the current output is the error. The objective of the feedback control system 
is making it zero by manipulating inputs of the system. The diagram for feedback control 
system is shown as below. 
    In the case of the inverted pendulum, x, the position of the inverted pendulum, and theta, an 
angle between the rod and the perpendicular line, are outputs. Desired behavior, or reference, 
is theta = 0; we want to keep it upright. Their values are measured by instruments and put into 
the controller to calculate an input. The input is the force applied to the base of the pendulum, 
through which we manipulate its movement. However, the disturbance inputs, such as 
mechanical frictions, also involves in the motion of the inverted pendulum (Process), along 
with the input from the controller. Then, x and theta change, and these outputs again are 
measured and put into controller, completing one revolution of a closed-loop control system.   
 

 
Figure 2 Fundamentals of how the inverted pendulum is stabilized 

Purple arrows indicate the direction toward which the 
inverted pendulum should move when it is leaned as 
shown above. 
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    Among many kinds of controllers, a PID controller is a common feedback loop system. 
PID stands for Proportional, Integral, and Derivative. As the name implies, the input of the 
system is determined by three variations of the output’s value; the error (Proportional), 
integral value of the error (Integral), derivative value of the error (Derivative). The equation 
for PID controller is shown as below. 

dt

de
KdteKeK

DIPOutput

DIP +⋅⋅+⋅=

++=

∫  (19) 

 
 
Figure 4 Diagram for PID Controller2 
PID controller uses proportional gain, integral gain, and derivative gain of the error 
in order to determine the value of output which can make the error zero 

 
    This equation is needed to be analyzed in each component in physical points of view. In the 
inverted pendulum system, the error signifies how much the pendulum leans. 
 
 
 
 

                                                 
1 http://www.ic-tech.com/Fuzzy%20Logic/ 
(Diagram 1: open 2: general 3. specified) 
2 http://www.brewerscience.com/products/cee/technical/ceepid/ 

 
Figure 3 Comparison between Open Loop Control System and Closed Loop 
Control System1 
Feedback control system differs from open loop system because it measures 
the output and feedback it to the controller. Output determines the value of 
the next output. 
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a) Proportional component 
 
    The error is multiplied by Kp and added to the controlled output. For example, for a heater, 
a controller with a proportional band of 10 °C and a setpoint of 20 °C would have an output of 
100% at 10 °C, 50% at 15 °C and 10% at 19 °C.3 
    In the pendulum system, when the rod leans more, the increased theta increases the sum of 
output. The result is that more force is applied to the pendulum’s base. Note that when the 
error is zero, a proportional controller's output is zero.  
 

b) Integral component 
 
    Integral component signifies the average error during pendulum’s movement. Integral 
movement extenuates too fast response from P and D components. From balance between I 
component and P/D component, the PID controller determines the patterns of stabilization. 
 

c) Derivative component 
 
    Derivative of the error, or theta, is an angular velocity omega of the pendulum. It signifies 
how fast the pendulum is falling. The faster it falls, the more the force applied to it should be.  
 
    Each component contributes differently to the stabilization. Increase in proportional 
coefficient causes fast response, but it causes overshoots and steady state errors. Overshoots 
mean unnecessarily overt reaction. The highly responsive pendulum exerts too much force 
that the pendulum goes over the perpendicular line and fall down out of control. Also, steady 
state error is an error which is not removed by the controller. Bad controllers don’t make error 
zero, and the value the error converges is steady state error. The integral component has a 
force which eliminates this steady state error. Although large value of integral gain may make 
oscillations even larger and make the system unstable, reducing the error improves the 
accuracy of the system. Lastly, derivative component also contributes to fast reaction and, 
more importantly, provides a dampening effect to eliminate oscillation and overshoots. In the 
inverted pendulum system, it provides an overall stability to it.  
 

                                                 
3 Wikipedia : PID Controller 
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    Since each component has its good and bad points, one should combine the three in order 
to make the best stabilization of the pendulum. Finding ideal PID coefficients will be later 
explained in Discussion section.  
 

iii) Difference between the two methods. 
 
    Both oscillation and feedback system can stabilize the inverted pendulum. However, their 
characteristics are different each other. In their mechanisms, simple oscillation is a kind of 
open-loop controller, whose input is fixed at any time. In contrast, feedback system is a 
complicated system whose input continuously changes depending on the pendulum’s physical 
condition. As a result, it’s unable to exactly predict the pendulum’s motion.  
    The differences in physical complexity also determine the differences in the controlling 
device. Oscillating the pendulum needs a very simple machine such as a robot arm or a 
speaker (which makes very minute oscillations), but to realize feedback system needs an 
advanced electrical device which can perform differentiation and integration, and simulate 
mathematical modeling. 
 Nevertheless, feedback system is not an inefficient controller. Rather, the opposite is 
true. Complexity of the PID controller enables very flexible control compared to oscillation. 
In a strict sense, oscillating imperfectly stabilizes the pendulum because it doesn’t make the 
rod stand upright but oscillate continuously. However, PID controller can vary the stabilizing 
movement by manipulating the values of P, I, D gains. In one case, one can make the 
stabilized pendulum oscillating precariously. In the other, one can make it exactly upright and 
not moving a bit. 
 
Table 1 Comparison between oscillation and feed back control system 

 Cost Instruments Complexity Flexibility 
Oscillation Less Simple(speaker) Can be solved 

with a clear-cut 
motion equation

Only one can 
stabilize or not. 

Feedback 
System 

More Complex  
(a device with 
complicated arithmetic 
calculation) 

Nonlinear 
Need to be 
familiar with 
control theory  

Can vary the pattern 
of stabilization 

                                                                                                                                                         
4 Cuthbert Nyack Control (http://controlcan.homestead.com/files/acontrol/con2pid.htm) 

 
Figure 5 P Control, PI Control, PID Control (from top to bottom)4 

P component is basic measure of the control system, I component eliminates 
steady state error, and D component extenuates oscillation. 
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C. Apparatus 
 
    Realizing the control system needs computer program which can simultaneously check the 
pendulum’s conditions and calculate. 
    The inverted pendulum moves by the cart attached to it. The cart is fixed on a screw rail 
run by a motor. The cart and the pendulum do not move itself but the rail does. The motor is 
connected to the computer and it takes in charge of all the calculations needed for a PID 
controlling. The computer receives the information of x and theta, calculates how much force 
is needed to make the pendulum upright, and gives the value for torque applied to the motor. 
The motor’s speed is determined by at every one thousandth second. Using CEMTool, a 
Matlab based program for controlling, we constructed PID controller system, which measures 
x and theta and calculates the force applied to the cart at every 0.001s.  

 
Figure 6 Apparatus of the Experiments (upper column) and Interface of CEMTool 
(lower column) 
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D. Experimental Method 
 
    Because of the limitation in the apparatus, we made experiments only on the case I and 
case iii.  

i) horizontal oscillation 
 
    To realize the horizontal oscillation of the pendulum, we should know which function of 
the force is needed to make the pendulum oscillate precisely. However, the mechanics of the 
inverted pendulum system is complicated by the cart, the rail, and the motor which are not 
considered in the theoretical model. The precise physical model which takes those three into 
account is shown in Equation 20 & 21. 
 

θθθθ sincos)( 2&&&&&& mlmlxbxMmF −+++=  (20) 

θθθ &&&& lgx 2sincos =−−  (21) 
 
 Basically, the real physical model has nonlinear components, so it’s unable to get a 

solution for force F to make 0,cos 00 == ytAx ω  

 As a result, we needed to adopt PID controller in order to realize the horizontal 
oscillation. By handling PID gains, we made the pendulum stabilize with oscillation, and then 
began experiments. Although the process of setting the gains’ values is arbitrary because of 
the system nonlinearity, we were able to vary the stabilization patterns using a conventional 
method for setting PID gains without mathematical calculation.5 
 

a) Experiment 1 : Proving the theory’s validity 
 
    In the theoretical background part, we proved that in the stabilizing pendulum the value of 
theta is determined by x. From the graph of x, we drew the graph of theta calculated from 
Equation (18). Then, it is compared with the experimental value. 
 
 

                                                 
5 Engineers in the control theory use more complicated method to determine PID gains, but 
we didn’t use it because this paper focuses on the motion of the inverted pendulum, not the 
PID controller itself. 

 
Figure 7 Diagram of cart-pendulum system (Left) and Oscillation interval of 
the controlled inverted pendulum (Right) 
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b) Experiment 2 : how mass and length affect stabilization 
 
    Among many variables which affect the stabilization of the inverted pendulum, its mass 
and length greatly determine major part of its motion, like those of the free-falling pendulum.  
    The pendulum consists of the heavy weight at the end and the rod. We prepared 4 different 
finds of weights (24.4g, 35.9g, 73.3g, 108.5g) and observed the difference in stabilizing 
pattern. Then again, with 4 different kinds of rods (30cm, 40cm, 60cm, 70cm) the 
experiments were repeated.  
 

ii) Experiment 3 : PID Control 
 
    As mentioned before, with PID controller the inverted pendulum can have various 
stabilized patterns. It is also possible to stabilize faster and more accurately than simple 
oscillation. In this experiment, we searched for the condition of PID coefficients which can 
achieve the perfect stabilization of the inverted pendulum. 
    First, we changed the values of PID coefficients one by one and checked their effects each. 
In this case, we decided the standard of perfect stabilization as followings: first, less time to 
reach stabilization (less than 5 seconds) and, second, almost no oscillation after stabilization 
(angular amplitude less than 1cm). First, through simulation using CEMTool, we first grasped 
the range of PID coefficients which stabilizes the pendulum. Then, minute adjustment was 
based on actual demonstrations. 
 

E. Result 
 

i) Experiment 1 : validity of the theory 

 
Figure 8 Graph of x and theta of the inverted pendulum stabilized by PID 
Controller 
Black box shows the oscillating interval. 

 
 
 
    It was previously mentioned that when the inverted pendulum is imposed an oscillation 

0,cos 00 == ytAx ω , theta becomes 2
0

2

cos

ωω
ωθ

+
−= tD

. Figure 8 is graphs for x0 and theta 

measure from Experiment 1, and we can see that when x starts to follow a sinusoidal function, 
theta also resembles a sinusoidal function, implying the validity of the theoretical model. To 
prove that the the function of theta is exactly the same with that calculated by theoretical 
model, we should check the amplitude and angular frequency of the cosine fuction. Table 2, 
shown below, is the result for the comparison of angular frequency at various lengths and 
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masses. Notice that length of the pendulum, shown in the table, is equal to L, not l, which is 
defined as the distance between the pendulum’s pivot and the pendulum’s center of mass. The 
relationship between L and l is later calculated in Appendix 1. m is the mass of the weight 
attached at the end of the pendulum. 
 
Table 2 Comparison of Experimental Value and Theoretical Value of Angular Frequency 

L (cm) 30 40 60 70 

m (g) 108.5 108.5 108.5 108.5 

expω  
1.213 
±0.081 

1.206 
±0.040 

1.230 
±0.061 

1.206 
±0.053 

theoryω  1.199 1.220 1.199 1.215 

Error 0.014 0.014 0.031 0.009 

L (cm) 40 40 40 40 

M (g) 24.4 35.9 73.3 108.5 

expω  
1.188 
±0.060 

1.213 
±0.051 

1.236 
±0.063 

1.239 
±0.062 

theoryω  1.198 1.207 1.218 1.229 

Error 0.01 0.006 0.018 0.01 
Table 3 Comparison of Experimental Value and Theoretical Value of Angular Amplitude 

L (cm) 30 40 60 70 

m (g) 108.5 108.5 108.5 108.5 

0
expθ  

11.257 
±0.909 

7.068 
±0.785 

5.498 
±0.785 

5.149 
±1.277 

0
theoryθ  11.596 7.221 6.049 4.633 

Error 0.339 0.153 0.551 0.516 

L (cm) 40 40 40 40 

m (g) 24.4 35.9 73.3 108.5 

0
expθ  

19.350 
±0.785 

17.618 
±0.453 

12.043 
±0.906 

6.977 
±0.453 

0
theoryθ  19.984 18.070 11.865 7.427 

Error 0.634 0.402 0.178 0.450 
 
    The error between expected amplitude and actual amplitude and that between expected 
frequency and actual frequency are little. From the result, we can see that the theoretical 
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model fits well with the actual experiment. Finally, when the pendulum’s pivot oscillates 

in 0,cos 00 == ytAx ω , it can be stabilized with theta 2
0

2

cos

ωω
ωθ

+
−= tD

. 

 
ii) Experiment 2 : how mass and length affect stabilization 

 
    So far, we saw that the theoretical model for the inverted pendulum is correct by comparing 
theoretical estimates and experimental values. Next, how the pendulum’s physical 
characteristics, such as length and mass, affect the pattern of stabilization is studied during 
Experiment 2. 
    Figure 9 shows the result. For every length of the rod, a weight with 108.5g was used. As 
longer rod is used, the amplitude of the oscillation decreases while frequency keeps the same 
value. 
    Also, we varied the mass of the weight on the tip of the pendulum. For every mass of the 
rod, a 40-centimeter-long rod is used. As a weight with heavier mass is used, the amplitude of 
the oscillation decreases while frequency keeps the same value. One with a heavier mass 
tends to be stable. 
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Figure 9 Effects of Mass and Length 
As length increases, the amplitude of the cosine 
function decreases while the frequency remains the same. In other words, the long pendulum 
stabilizes more readily. 
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iii) Experiment 3 : PID Controller 
 

 
 
 
 
 
 
 
 
             
 
 
 

 

  

   
Figure 10 Effects of P, I, D Coefficients 

 
    Figure 10 shows how the pendulum’s movement changes with P, I, D coefficients.         
Although the only obvious characteristic shown in the graph is amplitude, it still represents 
the coefficients’ roles in stabilization. As P increases, the amplitude increases, which is very 
characteristic of P component. As I increases, the amplitude recognizably decreases, and 
especially when I = 800, the pendulum is stabilized with almost no oscillation. This case (P= 
300, I = 800, D=0.7) fits to the conditions of perfect stabilization. As D increases, the 
amplitude increases. Difference between P and D is that the amplitude changes a lot more by 
D than by P. The next chapter will analyze the result from the two experiments. 
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F. Discussion 
 

i) Experiment 2 : length 
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 where L is the length of the pendulum, l the distance between its pivot and its center of 
mass, m mass of the rod, M mass of the weight. 
 

 Substituting m, M, l, ω 6 for D and 0ω  clearly explains more stable motion in the 

longer pendulum. As seen in the last Equation (22), L is in the denominator so that increase in 
L eventually results in decrease in angular amplitude 
 In viewpoint from energy and torque, more length means more moment of rotation. 
Thus, the rotational energy from the basis affects less to the end of the long pendulum than 
that of the short pendulum. It results in less overshoots, making the pendulum more stable. 
 Constancy of the angular frequency is because angular frequency of theta is the same 
with frequency of x, defined byω . Thus, length does not affect to the frequency. Note that 
the free falling pendulum’s frequency is affected by length.  
 

ii) Experiment 2 : mass 
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 From equation (23), increase in M causes angular amplitude decreases as denominator 
increases faster than numerator.7 Thus, the graph in Figure 9 supports the theoretical 
expectation. 
 

iii) Experiment 3 : PID Controller 
 
 The result from Experiment 3 basically supports the characteristics of P, I, D gains. 
Increase in P and D coefficients makes the response faster at cost of stability. As a result, the 
angular amplitude increases as the coefficients become larger. On the other hand, I coefficient 
improves the stability of the inverted pendulum system and reduces its angular amplitude. 
 We also saw the one case of perfect stabilization, in which the pendulum is stabilized 
with almost no oscillation. To find such cases of perfect stabilization, there are various 
methods, such as Ziegler-Nichols auto-tuning method and Relay auto-tuning method. 
However, in most cases, they are based not on physical modeling but mathematical control 
                                                 
6 Detailed procedure of substitution is shown in the appendix 2. 
7 Detailed explanation for this statement is shown in the appendix 3. 
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theories. Although there are model-based methods such as root-locus method and transient 
response method, they are hard to apply to the inverted pendulum system because of its 
complexity. As explaining about the methods need comprehensive knowledge of control 
theories, we just introduce the name of methods. 
 

G. Conclusion 
  
 The paper covers the inverted pendulum and its various controlling methods, including 
PID controller. Theoretical model was established based on the basic mechanism of the 
ordinary pendulum, and proved true by a series of experiments. It also enables us the 
prediction for how physical characteristics of the pendulum, such as mass and length, affects 
its movement and stability. The experiments showed the valid relationship between the 
pendulum’s physical traits and stabilization patterns, which also correspond to the theoretical 
expectation. Finally, PID controller provides the possibility that the pendulum can not only 
just be stabilized but also be stabilized with various patterns. Among them, we analyzed the 
perfect stabilization case and realized it. In this aspect, PID controller shows high 
applicability and flexibility in controlling the inverted pendulum. 
 For one who should choose between PID controller or simple oscillation, the choice 
depends on one’s preferences. As those two methods have strengths and weaknesses, shown 
in Table 1, one should choose strong points as a tradeoff for other strengths. In conclusion, 
the question how to keep the pendulum upright has many answers, and the choice is open to 
the users. 
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 PID제어기 계수는 제어대상 시스템의 모델이 주어질 경우에 주파수영역 설계법, 

근궤적법 등을 사용하여 반복과정을 통해 설계할 수 있다.  

 

Appendices 
 

i) Calculation of the Center of Mass and Rotational Inertia 
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a) Center of Mass 
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b) Rotational Inertia 
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ii) Detailed process of the equation for angular amplitude 
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iii) Denominator and numerator of the angular amplitude 

 
 The objective is to determine which side, denominator or numerator of the angular 
amplitude, increases faster as M increases. ω and A have their maximum value because the 
inverted pendulum cannot be stabilized over certain value of ω and A. Although the 
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thresholds cannot be measure precisely, the experiments showed that approximate maximum 
value forω and A is 1.5 and 0.3, respectively. Thus, 
 

8.93.0*5.1 22 ≈<< gAω  
  
 Multiply the both sides by mL, then, 
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 In other words, the denominator of angA  increases faster than the numerator of angA  as 

M increases. 
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7. Problem №10:  Inverted pendulum 
 
7.1. Solution of Korea 

7.1.1.Review of  solution of Korea 

 

Review of solutions of the problem number №10:  Inverted pendulum 
 

The problem is an interesting problem from both the theoretical and 
experimental points of view. It opens possibilities to perform a number of 
experiments at the high-school level using a variety of techniques to provide the oscillations 
required to stabilise the system. Mathematical solutions of some complexity but based upon 
concepts already met at high school level should be feasible. Numerous sources of sample 
theoretical solution to stabilising a single inverted pendulum exist to give guidance but less 
information is available relating to the situation of an inverted multiple pendulum. 
 
Solution from Korea: 
The solution from Hyeongsu Park of the Korean team concentrates on the situation of a single 
inverted pendulum and looks at comparing differing methods of achieving the stabilisation 
required. 
The paper references Blitzer’s paper “Inverted Pendulum” in the American Journal of 
Physics, Volume 33, Issue 12, June 1965, pp.1076-1078, but this is not clearly cited within 
the theory development. Three other references are well cited and used. Given the number of 
papers on a single inverted pendulum available it is difficult to measure the originality of the 
solution but the comparison of methods is a nice element and would lead to a useful 
discussion tool in school physics lessons. 
The use of language is confusing at times but the mathematical arguments are well developed 
and easy to follow. These are supported by clear experimental methods and graphs of the 
results. 
I think it is a good solution of the problem of a single inverted pendulum involving careful 
research of secondary sources and well conducted experiments. The variety of stabilisation 
patterns was an interesting finding. It is a little disappointing that the more original problem 
of an inverted multiple pendulum was not addressed. 
 
Overall: A nice report, but with the minor drawback that it addresses only part of the stated 
problem. 
 
 
Alan Allinson 
IYPT Australia 
alan@iyptaustralia.org or allinson@bggs.qld.edu.au  
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7. Problem №10:  Inverted pendulum 
 
7.2. Solution of Ukraine 

Problem №10: Inverted pendulum 

Maxim Anisimov, UPhML KNU,  
Ukrainian Physical and Mathematical Lyceum 
of Kyiv National Taras Shevchenko University, Ukraine 
 
The Problem: 
 
It is possible to stabilize an inverted pendulum It is even possible to stabilize an inverted 
multiple pendulum /one pendulum the top of the other/. Demonstrate the stabilization and 
determine on which parameters this depends. 
 
Introduction  
    Inverted pendulum is an interesting example of the non-linear oscillating system. The main 
idea of this device is an oscillating point of suspension. In this case, upper position of the 
pendulum is stable. The motion of the inverted pendulum is a classical example of the motion 
in the fast-oscillating field.  
    It was first theoretically investigated by P. L. Kapitza in 1951, so the physical model of the 
single inverted pendulum is well-known. Kapitza also demonstrated an experimental device to 
prove his theoretical results. 
 
Problem statement. 
    To build a complete solution, both theoretical and experimental sides of the problem should 
be considered. Theory proves the possibility of stabilization, and experiment demonstrates it. 
Physical model.  
 
    The main idea of such stabilization is to oscillate the point of suspension vertically with the 
frequency, lot more than the characteristic one. The motion equation looks as following 
(general form): 

( ) ( ) cosx f x F x t+ = Ω&& ,       (1) 

here 
1

T
Ω >> , where T is the specific period of motion in the system. 

The solution X is found as the sum of slow and fast oscillating parts x(t) and µχ(t). After some 
transformations the equation (1) is rewrote as: 

2

1 ( )
( ) 0

2 X

F X F
X f X

x

∂+ + =
Ω ∂

&&  

    We see that additional force appears; it is proportional to the oscillations’ amplitude. 
    Now let’s consider the double pendulum, consisting of two point loads on the weightless 
sticks: 
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First of all, we write down the coordinates of 
weights М and m: 

sin ,
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sin sin ,
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m

m

x L l

y L l a t

θ ϕ
θ ϕ ω

= + ⋅
= + ⋅ + ⋅

 

Now let’s evaluate the kinetic (T) and potential (U) 
energy of these weights: 

2 2( ),
2M M M

M
T x y= +& & 2 2( );

2m m m

m
T x y= +& &  

,M MU Mgy= .m mU mgy=  

Then we write the Lagrange function (the difference T-U) for all the system: 
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M m M m M m
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ϕ θ ϕ θ ϕ ω ω ϕϕ θ

ω ϕ

+ + +     = + − +     
     

 + + − − − + − 
 

− + −

& &

&& & &

L

  

    Now, using this expression, we can write down the following set of differential equations: 

,
d

dt θ θ
∂ ∂  = ∂ ∂ &
L L   ,

d

dt ϕ ϕ
 ∂ ∂= ∂ ∂ &
L L  

that describes the motion of double pendulum. 

    After derivation, simplifying and some transformations we get another system: 

2 2( ) sin sin sin cos( ) sin( ) 0M m L a t g mlθ ω ω θ θ θ ϕ ϕ θ ϕ ϕ   + + − + − + − =  
&& && &  

2 2( sin )sin sin( ) cos( ) 0l a t g L Lϕ ω ω ϕ θ ϕ θ θ ϕ θ+ − − − + − =& &&&& . 

 

Equilibrium condition. 

     To solve these equations, we use the same method as for Kapitza pendulum equation. We 
substitute angles θ  and ϕ  in the form: ,θ γ α= +  ϕ δ β= + , where the first terms vary 
slowly relatively to the second terms. Averaging upon the period of the point of suspension 

oscillations 
2π
ω

, one can get the set of 4 equations: 

2( ) sin 0M m L a t g mlγ ω ω α γ δ + + ⋅ − + = 
&&&&  (2 a) 

2 sin 0l a t g Lδ ω ω β δ γ+ ⋅ − + =&& &&    (2 b) 



 96 

2( ) sin 0M m L a t g mlα ω ω γ α β + + ⋅ − + = 
&&&&  (2 c) 

2 sin 0l a t g Lβ ω ω δ β α+ ⋅ − + =&& &&    (2 d) 

    In the two last equations one should consider sin ,A tα ω= sinB tβ ω= , and other 
variables are constant. Then, finding A and B from (2 c) and (2 d), one can get solutions in the 
form: 

1 2A f fγ δ= + , 

3 4B f fγ δ= + . 

    Then (2 a) and (2 b) look as follows: 

( )
2

1 2 0
2

a
L f f g l

ωγ γ δ γ µ δ+ + − + =&&&& , 

( )
2

3 4 0
2

a
l f f g L

ωδ γ δ δ γ+ + − + =&& && ,
m

M m
µ =

+
. 

    We find general solution in the exponential form, γ ∼ δ ∼ eλt. 
     After some transformations we get the characteristic equation for λ: 

 
2 2 2 2

2 2 2 2
1 4 2 32 2 2 2

a a a a
L f g l f g f l L f

ω ω ω ωγδ λ λ δγ µ λ λ     
+ − − − + = − − +     

     
 

It is biquadrate, and possible roots are 1 2,λ λ± ± . For the stable equilibrium they should 

be purely imaginary, so, ( )2

1,2
0λ < . Writing the equation as polynomial of λ, one can get: 

 

λ4 ( ) − L l µ l L λ2 





 −  +  −  −  − 

L a ω 2 f4
2

L g
a ω 2 f1 l

2
g l

a ω 2 f2 L
2

µ l a ω 2 f3
2

 + 

a2 ω 4 f1 f4
4

a ω 2 f1 g
2

g a ω 2 f4
2

g2 a2 ω 4 f2 f3
4

 +  −  −  +  − 0 = 
 

or 
4 2 0A B Cλ λ+ + = . 

    We designate coefficients near λ by А,В,С, where А>0. According to the Wiet theorem, to 
find the equilibrium, the following conditions should be fulfilled: 

2

0

0

4 0

B

C

D B AC

>
>
= − >

 

    It’s difficult to solve these inequations manually, but with the help of computer it’s possible 

to get numerical dependences of А,В,С,D on the frequency and amplitude. 

Graphs showing dependence upon amplitude and frequency,  

built with Maple 8 (Constants: M = 0.1;  m = 0.01;  L = 0.3;  l = 0.2 ). 
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Experiment.  

    To demonstrate the real stabilization, our team constructed an experimental device. Its 

photo is shown below: 

 

 

 

Conclusions.  
 
    To solve the problem theoretically, known physical model of a single inverted pendulum 
was considered. It was used as a basic one to build the theory of double pendulum. Resulting 
solution determines the possibility of stabilization, depending on initial conditions, which are 
inputted numerically. 
    The presented problem solution demonstrates an example of the physical modelling of non-
linear oscillating systems. 
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8 Problem № 11: Singing tube 
 

8.1. Solution of Australia 

 Problem №11: Singing tube 
 
Kathryn Zealand, Brisbane Girls Grammar School, 47 Verney Rd. West, Graceville, 
Brisbane, QLD 4075, Australia, s106863@bggs.qld.edu.au 
 
The Problem: 
It is possible to stabilize an inverted pendulum It is even possible to stabilize an inverted 
multiple pendulum /one pendulum the top of the other/. Demonstrate the stabilization and 
determine on which parameters this depends. 
 

1. Abstract 
    The Rijke or Singing Tube is a vertical tube with metal gauze inserted in the lower half. 
After heating the gauze, a loud sound is produced. By investigating many aspects of the 
Singing Tube phenomenon, it was discovered that during a compression, cool air is drawn in 
and heated, this causes its pressure to change, augmenting the pressure maximum. This action 
creates and sustains the acoustic wave, however when determining the optimum gauze 
position, the two factors of consideration disagree. The Rayleigh Criterion and Rayleigh 
Index provide a more precise model of the relationship between gauze position and sound 
intensity. Expressions for heat transferred from the gauze, and where this heat was lost to 
provide insight into the mechanisms which determine how long the singing can be sustained, 
and thus what variables to experimentally investigate, these included tube length, diameter, 
material, shape and the gauze’s heating time.  
 
2. Interpretation  
 We were asked to investigate the ‘singing’ produced by an open tube over a flame. We 
defined ‘singing’ as a loud sound with definite frequencies, and minimal variation in sound 
intensity. We tried producing a sound with just a tube over a flame; however, we did not 
count this quiet and raspy sound as ‘singing’. Research suggested that adding a piece of gauze 
inside the pipe would enhance the noise to a louder and measurable ‘singing’ tone. Therefore, 
we concentrated on this interpretation of a singing tube (also called the Rijke8 tube). 

  
3. Basic Theory 
 There were 2 phases of heating, in the initial heating phase, the Bunsen heats the gauze, yet 
no sound is produced. After removing the heat source, the tube ‘sang’ for a period of time 
before stopping. To understand how this creates sound, some basic theory is needed. 
 
3.1. Waves 

Sound or Acoustic waves are longitudinal, meaning that the particles vibrate in the 
direction of the wave’s propagation. A sound wave is made of compressions (areas of high 
pressure) and rarefactions (areas of low pressure). Particle displacement and pressure 
variations can be modelled by the sinusoidal functions [1]:  

                                                 
8 P.L. Rijke was a professor of physics at the University of Leyden in the Netherlands when, in 1859, 
he discovered this phenomenon 
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Figure 11 Pressure and Displacement functions are out of phase 
Where ω is the angular velocity, p is the pressure, k is the wave number, sm is the 
displacement amplitude and pm is the pressure amplitude. The pressure and displacement 
functions are out of phase. 

 Hot air is less dense than cool air, so will rise. An initial compression is caused by the 
rising hot air, as the static air above it will ‘bunch up’ causing a compression. This hot 
moving air will also cause a pressure difference between the inside of the tube and the 
ambient outside pressure, so a pressure barrier at the end is formed. Some of the initial 
compression will then reflect of this barrier back down the tube. The reflected compression 
will constructively or destructively interfere with the rising hot air forming a standing wave. 
 
 3.2. Standing Waves and Resonance 

 The standing wave is cause by the 
interference of the reflected wave on 
itself. A standing wave consists of 
nodes (areas of least particle and 
velocity displacement) and antinodes 
(areas of maximum particle and 
velocity displacement). The standing 
wave causes us to hear a continual tone. 
Resonance is caused when the standing 
wave is continually reinforced, the 
amplitude is increased creating a very 
loud sound, the air column in the pipe is 
said to resonate. 
 

 3.3. Harmonic frequencies 
    For the tube to resonate, the tube length must be a multiple of half wavelength of the 
standing wave, we can express this as nλ=2L, where λ is the wavelength, and L is the tube 
length. The first harmonic is called the fundamental harmonic (f0) and only has one nodal 
point in the tube. Higher harmonics are multiples of the fundamental (see figure 2). 
 From the wave equation, v=fλ, where v is the velocity of sound, and the relationship 
above, we can derive a formula for the frequency [2]. 
 

 

However, the air particles also vibrate with a slight sideways motion, and beyond the end of 
the tube. This results in a necessary ‘end correction’ [3], where d is the diameter of the tube. 
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dL

nv
f

8.02 +
=  

For the fundamental frequency (n=1), and at a temperature of 34°C (where v, the speed of 
sound is 351ms-1), the frequency becomes: 









+
=

dL
f

4.0

1
5.175  

4. Sustaining the acoustic wave 
 

 Some of the wave and thus energy escapes and is emitted at the end of the tube. Therefore 
heat energy must be added to sustain the oscillations. There must also be a continuous air 
flow; we demonstrated this by turning the tube to horizontal, which removed the thermal 
convection. As predicted, the tube did not sing. 
 
4.1. Velocity and Pressure Fluctuations 

 
    The flow past the gauze is a combination of two motions. There is a uniform upward 
velocity, caused by the rising hot air, and a varying velocity, u’ caused by the sound wave 
(oscillatory particle vibration velocity). 
    There is an ambient or mean pressure, as well as the varying pressure, p’ caused by the 
compressions and rarefactions of the acoustic wave. 
 

4.2. Amplifying the wave 

    For half the cycle, the varying and uniform velocities are in the same direction, which is 
when the particles around the gauze are vibrating upwards, in the same direction as the 
thermal convections. Therefore, air will be drawn up into the tube until pressure reaches a 
maximum. Most of this air will already be warm (having been expelled from the hot tube 
during the last cycle). However just before the pressure reaches a maximum, some cool air is 
drawn in, this is because the uniform thermal convection pushed some of the warm air out of 
the top of the tube last cycle. This cool air is quickly heated by the hot gauze, so there is a 
large heat transfer. This causes the (previously cool) air’s pressure to increase, adding to the 
pressure maximum. Therefore, although energy is being lost at the top of the tube, every cycle 
a small part of the gauze’s heat energy is used to increase the pressure maximum, thus 
amplifying the wave. 

 
4.3. Optimum gauze position 

    Since the singing is caused by cool air increase in pressure, there two things which must be 
considered when determining the optimum gauze position. First, the placement of the gauze 
should be such that the amount of cool air heated is optimised. As it is the combination of 
varying and uniform particle velocity that determines how much cool air gets heated, this 
would suggest that the gauze should be placed where the varying velocity is at a maximum, at 
the anti-node, for the fundamental frequency, the anti-node is at the end of the tube.  
    The second aspect to consider is where the cool air’s pressure increase will have most 
impact. The pressure increase reinforces the varying acoustic pressure, but at an anti-node, the 
varying pressure is zero, so placing the cool air’s pressure increase would have no effect. The 
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varying pressure is at a maximum at a node, so according to this, the gauze should be placed 
at a node, which is at the middle of the tube for the fundamental frequencies.  

     These aspects clearly disagree, so all this tells us is that the optimum position is a 
compromise, somewhere between the end and middle of the tube. The Rayleigh Criterion is a 
mathematical description of the interaction between pressure and velocity fluctuations and 
allows for more precise optimisation of gauze placement. 

 
5.  The Rayleigh Criterion  

 As energy escapes at the top end of the tube, to sustain the acoustic wave, heat energy must 
be added at certain points, according to the Rayleigh Criterion [5]; “If heat be given to the air 
at the moment of greatest condensation, the vibration is encouraged”. This means that most 
heat must be added in a compression. Please see section V of the Onera short lecture course of 
Combustion instabilities in liquid rocket engines [6] for a mathematical proof and derivation 
of the Rayleigh Criterion. 
 
5.1. Velocity and Heat Transfer  

    When there is a large heat transfer, many particles get heated and thus, many rise, this 
creates a large varying velocity. So the heat transfer, Q’ creates the varying velocity, u’. 
    As mentioned previously, when cool air is drawn in, heat is transferred easily so the heat 
transfer, Q’ is large. When the varying velocity, u’ is down and against the upward flow, there 
is little airflow, less cool air is drawn in, and the gauze is surrounded by warm air. Therefore 
there is less heat transfer, Q’ is small. 
So Q’ varies with u’, and there may be a time lag (as it is a cause and effect, rather than 

simultaneously). This can be expressed by: uQ ′′ α . Where τ is the time lag. In summary, 
the heat transfer is creates the varying velocity, and it is sustained by the varying velocity, so 
once the cycle is initiated, the waves are sustained. 
 

5.2. Rayleigh Criterion Integral   

    The Rayleigh Criterion can be expressed as “If p’ > 0 and Q’ > 0 or p’ < 0 and Q’ < 0, the 
wave is sustained” where p’ is the acoustic pressure, and Q’ is the heat transfer. A convenient 
way to express this statement is in the following integral, where T is the period of the wave, 
and R is the Rayleigh index [7]: 

∫= dtQp
T

R ''
1

 

The Rayleigh Criterion can now simply be expressed as if R > 0 the wave is amplified. Sound 
intensity will be greatest when I is maximised. 
 
5.3. Optimum gauze position   
 The optimum gauze position (for sound intensity) will occur where the Rayleigh Index, 
R, is maximised. It was seen in section 5.1, that the heat transfer is proportional to the varying 

velocity, uQ ′′ α  so R is proportional to the product of acoustic pressure and velocity. 
Now we need to maximise p’ u’. It was explained in 
section 3.1, that the acoustic pressure and velocity 
are sinusoidal:  
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Since we are only concerned with proportionality, and um and pm are constants (maximum 
amplitudes), they can be neglected: 

( ) ( )tkxtkxR ωω −−∝ sincos  

Here we can substitute in the trigometric identity, 2 sinx cosx = sin2x: 

( )
( )tkxR

tkxR

ω

ω

−∝

−∝

2sin

2sin
2

1

 

This function has a similar shape to the function for acoustic pressure, but it has half the 
period, therefore, R will be at a maximum halfway between the end of the tube and the node 
in the centre of the tube, where the pressure has a maximum: 
 

 

Figure 4 Diagram showing that the Rayliegh index is proportional to the product of velocity and 
pressure, and is at a maximum 25% up the tube, thus this is the optimum position for the gauze 

 

So the optimum gauze position is where R is at a maximum, which is 25% up the tube, and 
the sound intensity should follow a similar sinusoidal curve to the Rayleigh index as the 
gauze is moved along the tube. This supports the qualitative explanation presented in section 
4.4. 
 

 5.4. Gauze in upper half of tube   

 However, by this logic, a sound should be created when 
the gauze is 75% up, as this is also halfway between the 
fundamental node and anti-node, however, the cool air is 
drawn towards the centre just before the pressure 
maximum, and is pushed up past the centre after the 
pressure maximum. When the gauze is in the top half, the 
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Figure 12 Using a vacuum cleaner to 
reverse the air flow, changing the 
optium gauze position 

 
N.B. waveforms are for comparative purposes only; the amplitude of the Rayleigh index 
would be different due to constants of proportionality 
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cool air is heated just before the pressure minimum, so the increase in the cools air’s pressure 
cancels the acoustic decrease in pressure, thus diminishing the sound.  
 We proved this by reversing the direction of the thermal convections with a vacuum 
cleaner. This pushed cool air in from the top rather than the bottom. When using an artificial 
air flow, a sound was created with gauze in the top half. 
 
6. Heat Transfer 
 It has been demonstrated that the gauze will transfer little heat in a rarefaction, and lots 
in a compression, but how much heat is transferred, and what effect will this have on the 
singing time? Expressions for the amount of heat transfer will be derived in the following 
sections. 
 
6.1. Heat Transfer Expressions 

 Let us first examine where the heat from the gauze is lost to heating the air to provide 
the uniform thermal convection, sustaining the acoustic wave (heat transferred to cool air, 
discussed in section 7), and losses, which will be predominantly through conduction to the 
tube walls. The heat absorbed by the gauze through heating must transformed to the energy 
forms listed above, as energy is conserved, these must be equal. 
 This can be expressed in a differential equation as; 
 

 
dt

dQ

dt

dQ

dt

dQ

dt

dQ
losseswaveemittedconvectiongauze ++=   

 Where dQ/dt is the rate of heat transferred (measured in Joules per second). The 
standard equation for heat transfer to the gauze during heating is [2]: 
 

 
dt

dT
mc

dt

dQ gauze
gg

gauzebyabsorbed =  
 Where cg is the specific heat capacity of the gauze, 

mg is the mass of the gauze, and dT/dt is the change in temperature of the gauze. The heat lost 
through convection to the air can also be modelled by the standard heat transfer equation [2]: 
 

 
dt

dT
mc

dt

dQ
air

airair=convectiongh lost throu
 Where cair is the specific heat capacity of air, mair 

is the mass of air, and dT/dt is the change in temperature of the air, after passing the gauze. 
The average rate at which kinetic energy, Ek of a sound wave escapes can be expressed as: [1] 
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m
kwaveemitted sAv
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dE
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ωρ==  Where ρ is the density of air, A is the cross-

sectional area of the tube, v is the velocity of the wave, ω is the angular velocity, and sm is the 
displacement amplitude. Most of the losses will be thermal conduction to the tube walls, this 
can be modelled as follows:   

        ( )
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 Where k is the thermal conductivity co-efficient. These components can now be 

combined, so the original equation: 

 
dt

dQ

dt

dQ

dt

dQ

dt

dQ
losseswaveemittedconvectiongauze ++=  Becomes: 

 
dt

dT
kAsAv

dt

dT
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dt
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cm tube

m
air

airair
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gg ++= 22

16
1 ωρ  

 

6.2. What can this expression tell us? 

This expression reveals the limiting factor which affects how much heat must be given to the 
gauze for singing to occur, and how long the tube will sing for. The tube will start singing 
when: 



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To keep singing, the gauze must have enough heat or a large enough temperature gradient to 
provide constant heat to the air convections and losses to the tube. So the tube will stop 
singing when: 

 





 ++≤

dt
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cmdt

dT
tube
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air
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11 ωρ  

 Therefore, this expression reveals many factors and variables which affect the onset and 
discontinue of the singing. The type of gauze will have an effect since the expression starts, 

ggcm

1 , and both the mass and specific heat capacity are properties of the gauze, since it is the 

inverse of mass, the tube should sing for earlier and for longer when a heavier gauze is used, 
since a heavier gauze could absorb more heat. The atmospheric conditions will also affect the 
singing, since at different temperatures and humidities, the specific heat capacity of air 
changes. Also, if the air starts of warmer, then the change in temperature as it passes the 
gauze (dTair/dt) would be less. This is why 
all the trails for an experiment were 
conducted on the same day, or when the 
temperature is similar (within 3 degrees). 
 The cross sectional area, A, which is 
directly proportional to the diameter, 
appears in all three terms on the left had side 
of the heat transfer expression (mair = Avρt)
 and so that is why the cross sectional area 
was a controlled variable in experiments, 
and tube diameter was chosen to be 
investigated as an independent variable. sm 

Figure 13 vacuum cleaner used to replace the 
thermal convection, the tube sings in a horizontal 
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in 3rd term is the displacement amplitude, it describes how far the particles vibrate and thus 
determines sound intensity. This is why either sound intensity or singing time were measured, 
because they effect each other. 

 In the very last term, 
dt

dT
kA tube

, k is the thermal conductivity co-efficient, which is a 

property of the material, this highlighted the importance that the tube material has, which is 
why the material was investigated as an independent variable, and controlled in all other 
experiments. 
 

7.  Stopping the singing 

 There are three methods of stopping the tube from singing; hold the tube horizontally, 
place heat source under tube, and let the gauze cool. 
 When the tube is held horizontally, there is no thermal convection, so no cool air brought 
in contact with the gauze, so the wave cannot be amplified (we demonstrated that it was the 
lack of thermal convection preventing amplification by using a vacuum clean to produce 
artificial convections).  When the Bunsen burner or another heat source is under the tube, the 
air passing the gauze has already been heated, so with no heat transfer possible, there is no 
pressure increase to sustain the acoustic wave. As the gauze losses its heat energy to the 
passing air, it will gradually cool, until it is no longer able to supply enough energy to 
facilitate a pressure increase, and sustain the wave. 
 
8. Cold Gauze 
 The change in temperature between the gauze and the air causes the phenomenon; 
therefore, a similar sound can be produced with a gauze which is cooler than the surrounding 
air. A weak sound was produced when cold gauze (from freezer is sufficient in the Brisbane 
summer) was inserted 25% up the tube. The cold gauze causes a downwards convection 
current, so warmer air is drawn in at top just before the pressure maximum, and reaches the 
gauze in the bottom half just before the pressure minimum, the warm air is rapidly cooled by 
the gauze, its pressure decreases, enforcing the pressure minimum. 
 

9. Our Investigations 

9.0. General Procedure 
The 1mm steel gauze was inserted 
¼ of the way up each tube. The 
Bunsen burner was slid under the 
tube and 10 seconds later, the 
Bunsen burner was removed and 
another person recorded the 
singing with the microphone. This 
was repeated for all the tubes, five 
times then averaged.  
 

 

Figure 14 Sample datum collected and demonstration 
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9.1. Tube Length  

9.1.1. Hypothesis 

 As the tube length increases, the wavelength of the sound will increase, and therefore its 
frequency will decrease.  The frequency and tube length should have the following 

relationship: 







+
=

dL
f

4.0

1
5.175 . As the tube diameter was constant, the graph of frequency 

vs. 
dL 4.0

1

+
 should be linear. 

 

9.1.2. Results 

 There was an audible difference 
in pitch between the ‘singing’ from 
the larger and smaller tubes, this is 
evidence that the frequency was 
changing. The longer tubes 
produced a weaker tone. 
 

Figure 4 Graph of results from Tube 

Length experiment, linear relationship 

 

9.1.3. Discussions 

 We derived in section 4.3 that the fundamental frequency (at 34°C) was given by: 









+
=

dL
f

4.0

1
5.175  So in the above graph, a linear relationship predicted, with a 

gradient of 175.5. In the experimental results, the linear relationship is reasonable since the 
datum points are scattered on both sides of the line, the R2 value is 0.9893, and the 
uncertainties are small. The measured gradient was 177 ± 4. Therefore, the Harmonic 
equations derived in section 4 are accurate (within the uncertainty) and our hypothesis was 
supported. We have also consolidated the knowledge on which these equations were 
derived. 
 
9.1.4. Conclusions and Reflections 
 In section 9.1.3.1. it was observed that the sound volume and therefore intensity decreased 
as the tube length increased, this was unexpected, and upon further qualitative experiments, 
when heated for a longer period of time, the longer tubes ‘sung’ with more intensity than the 
shorter ones. One possible explanation for this discrepancy is that in longer tubes, the gauze 
is further from the Bunsen burner flame, so more of the flames heat may have been used to 
heat the longer air column and tube wall in the longer tubes than in the short tubes. Hence, 
an improvement to the procedure would be to measure the temperature of the gauze, and 
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stop heating once a certain temperature had been attained, rather than heating for a specific 
duration of time.  

 

 9.2. Tube Diameter  

 9.2.1. Hypothesis 
 As the tube diameter increases, the frequency will decrease. The relationship should be 









+
=

dL
f

4.0

1
5.175 . In this experiment, the tube length, L was constant, so the graph of 

frequency vs. 
dL 4.0

1

+
 should be linear, with a gradient of 175.5. 

 
 
 

 9.2.2. Results 

  For tubes bigger than 20cm 
in diameter, it became increasingly 
difficult to produce a sound. The 
larger diameter tubes had a larger 
sound intensity until they stopped 
producing a sound.  There was 
very little audible variation in 
pitch, since the frequency only 
varied ~10%. 
 

Figure 6 Graphed results from Tube Diameter experiment, linear relationship 

9.2.3. Discussions 

 We derived in section 4.3 that the fundamental frequency (at 34°C) was given by: 









+
=

dL
f

4.0

1
5.175 Experimentally, there was a linear relationship between the frequency 

and 1/(L+0.4d). Since the points at scattered both sides of the line, with an R2 value of 0.9952, 
this relationship is reasonable. In the above graph, the predicted gradient was 175.5, and the 
measured gradient was 174 ± 5. Therefore, (within the uncertainties), it has again been show 
that these Harmonic equations are accurate. We have also supported our hypothesis, that as 
the tube diameter increases, the sideways vibration of the particles and therefore the tube’s 
end correction increases, thus frequency will slightly decrease. However, it was observed in 
section 5.2.3.1 that this effect was less noticeable than it was when changing the tube length 
in experiment 5.1. This is because in our derived equations, tube diameter is multiplied by 
0.4, so is decreased, and the diameter of all the tubes was less then their length, thus changing 
the diameter of the singing tube had less of an effect than changing the length.  The increase 
in sound intensity with increasing tube diameter is due to a larger air flow since there is more 
hot gauze available to heat the air and cause the thermal convections. 

 

The effects of changing tube diameter on frequency
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9.2.4. Conclusions and Reflections 

             In section 5.2.3.1, it was observed that it became difficult to produce a sound when the tube 
diameter was greater than 0.20m, and the sound intensity decreased. A possible explanation 
for this is that will a wide tube, the barrier of pressure difference necessary for the travelling 
wave to reflect and cause a standing wave becomes unstable and weak, due to a less defined 
‘end’ of the tube. This would cause only some or none of the wave to be reflected, producing 
a weaker standing wave. One possible method of testing this would be to use a very sensitive 
pressure probe, so detect the strength and location of the barrier, such a sensitive instrument 
was not available for our use. 

 
 
9.3. Tube Shape:  

 9.3.1. Hypothesis 
 Since it is the column of air that resonates, not the tube its self, changing the horizontal shape 

of the tube should have no effect, as long as the tube still contains a region of air. 
 

9.3.2. Results 

Shape 
Approximation 

            

% change in 
diameter 

200 400 50 25 0 (centre =200%) 0 

observation Weak 
sound 

No sound  Normal 
sound 

No sound Gauze wouldn’t 
stay in, No sound 

Slightly weaker 
sound 

Frequency 221 - 226 - - 213 

Table 4 Frequency and observation results from Tube Shape experiment 

 

9.3.3. Discussion 
 There did not appear to be any clear trend in changing frequency (all values were within 
the 23Hz margin of error). In addition, our hypothesis was supported in the fact that the 
frequency is independent on the shape (this is because the tubes purpose is to channel the 
rising hot air, and provide boundaries for the air column that resonates, neither of these 
properties are affected by slight changes in tube shape.)   
 
9.3.4. Conclusions and Reflections 
 Tube shape has little effect on frequency. 
 It was observed in section 5.3.3.1 that for some shapes, the sound was weak or non-
existent, which contradicts the hypothesis that shape has no affect. A possible explanation is 
that it is not the shape of the tube that is inhibiting sound production, but rather the diameter 
at either end. As experienced in section 9.2.3.1, if the diameter at the top or bottom of the tube 
is too great, no definite barrier of pressure exists, so the standing wave cannot by created. A 
possible further experiment would involve using tubes of the same proportion, or same 
percent increase in diameter, but are smaller, as this would determine if a breakdown in the 
pressure barrier was responsible for the weaker sound. The curved tube may have produced a 
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weaker sound because the Bunsen’s heat was not directly under the gauze (it was under the 
end of the tube), so the gauze may not have been heated as effectively. 
 
9.4. Tube Shape:  
9.4.1. Hypothesis 
 Since it is the column of air that resonates, not the tube its self, changing the vertical cross 
section of the tube should have no effect on the frequency and sound intensity, as long as the 
tube still contains a region of air. 
 
 
 
  9.4.2. Results 
 
    Circular Square Triangle 

Frequency (Hz) 235 235 237 

Observation Loudest sound Weak sound Weak sound 

 
Table 5 Frequency and observational results from the Tube Shape (horizontal) 
experiment 
 
 
9.4.3. Discussion 
    Since sound is a longitudinal wave, and it is the air not the tube that resonates, there was no 
noticeable effect on frequency (within the 10Hz uncertainty), supporting the hypothesis. The 
observation of the sound being strongest with the circular tube was unexpected, and difficult 
to explain, our best inference is that there is more air flow in circular tube because the 
triangular and square tubes had corners, and a larger internal surface area. This may cause a 
larger boundary layer, so the air flows slower in the corners and the gauze in the corner areas 
doesn’t heat as well, so the useable area in the square and triangle is effectively reduced to 
that of a smaller circle (see figure 4). This would account for the decrease in sound intensity. 

 
 
 
 
 
 

 
 
 
 

 
 
Figure 7 Although all tubes had the same area, this diagram shows that since air got caught in 
the corners, the shaded usable area likely decreased. 

Area of circle = 
3.14 

Area of square = 3.14 
Area of circle = 2.47 

Area of triangle = 3.14 
Area of circle = 1.05 
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The effect of the themal conductivity of materials on 
the Singing Time
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9.4.4. Conclusions and Reflections 

     Tube shape had little effect. 
     An interesting further experiment would involve electrically heating the gauze, to ensure 

even heating, and having an artificial airflow though the tube, this would help determine if the 
reasons behind the observed changes in sound intensity. 
 

9.5. Tube Material  

9.5.1. Hypothesis 

     We saw in section 6 that if the change in temperature of the gauze becomes less that the 
that required to heat the convecting air, the tube and sustain the kinetic energy of the wave, 
the tube stops singing, this was explained thus: when  

 

 
 

 
 

The tube stops singing. The k in the last term is the thermal conductivity of the tube. So 
from this equation we can see that as the thermal conductivity of the material decreases, the 
tube will sing for longer, as the gauze needs a lower temperature to sustain the wave. When 
the thermal conductivity of the tube material increases, the gauze needs more heat, and so will 
not be able to sustain the singing for as long. As sound is a longitudinal wave, the tube acts 
only as the boundary for the air column inside which vibrates, therefore the frequency should 
be unaffected by the tube material. 

 
   9.5.3. Results 

Material iron steel aluminium PVC wood Glass Paper Plastic cardboard 

Thermal conductivity  79.5 50.2 205 0.19 0.1 0.8 0.05 0.02 0.07 

frequency 218 219 215 223 223 223  -  - 223.5 
Singing time 26 27 24.3 39.1 39.5 37  -  - 40 

Table 6 Frequency and Singing time results for materials of different thermal conductivities 

The paper and thin plastic tubes did not sing because they combusted. 

 

The effect of different materials on frequency
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Figure 9 The effect of thermal conductivity of the tube on the Singing time and frequency 
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9.5.4. Discussion 
 
    The hypothesis stated that as the thermal conductivity increased, the tube should sing for 
less time, since more of the gauze’s heat was conducted away to the tube. This was supported 
experimentally and an exponential relationship was found. However, the hypothesis stated 
that there should be no effect on frequency, however this is not what we found 
experimentally; there was variation in frequency for the different materials. Therefore, after 
brainstorming the differences in the materials, and what could cause the frequency to change, 
the relationship was realised. Some materials conduct heat away from the gauze and air more 
than others.  Tubes with a high thermal conductivity will conduct heat away from the gauze 
easily, so the gauze is cooler and will not sing as long as it will in tubes with a low thermal 
conductivity. Recall from section 4.3. the equation for frequency:  

vf
dL

v
f ∝ →←

+
= constant are d and L  tubes,sized samefor 

8.02
 

    As long as the tube length and diameter are kept constant, the frequency is directly 
proportional to the velocity of sound. However, the speed of sound is not constant, it depends 
upon the temperature. 

]4[constants are  and R TvRTv ∝ →←= γγ  

 
    So now it is clear that frequency has a squarely relationship with temperature: 

TfTf ∝⇔∝ 2  However, we do not know how the different materials change the 
temperature in the tube. Recall the equations regarding temperature and heat from section 6, 
the information concerning their thermal conductivity, k, and specific heat capacity, c is 
available. Thermal conductivity is a measure the rate at which heat is transferred per unit area. 
Since all the tubes had the same dimensions, Heat lost is proportional to the thermal 

conductivity, kQ ∝ . 
Heat lost can also be expressed in terms of the mass and specific heat capacity of the tubes, 

Q=mcT. Therefore, it means that: 
 
 
 
   

 
 
    So this predicts that a graph of f2 vs. k/mc should 
be linear. Experimentally a linear relationship was 
found. This relationship is reasonable since the R2 value is 0.9981. The relationship had a 
gradient -30000±1200, and intercept of 50000±4000Hz2. This means that if the tube were a 
perfect insulator (k=0) then the frequency would be 223Hz=√50000 

 

9.5.5. Conclusions and Reflections 
 
 Frequency and the thermal conductivity of the tube have the following relationship:  

mc

k
f

mc

k
TkmcTQ

Tf
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50000300002 +−=
mc

k
f . It was felt that this experiment could be improved by having 

materials with a wider range of thermal conductivity values, as the PVC, wood, glass and 
cardboard tubes all had similar values. Although the hypothesis was proved incorrect, more 
interesting discoveries were made as a result. 
 
9.6. Gauze Position  

9.6.1. Hypothesis 
 It was discovered in section 5.3. that the Rayleigh Index and therefore the sound intensity 
follow a sinusoidal function with respect to the position of the gauze in the tube. This sine 
curve has a period of the length of the tube (100%), and a maximum at 25%. The graph of 
sound intensity vs. the sine of the product of 3.6 and gauze position should be linear. (3.6 
alters the normal period of the sine function (360°) to the length of the tube, 100 (%). 3.6= 
360/100) 
 
9.6.2. Results 
 The tube did not sound at all when the gauze was in the upper half. The computer program 
recorded background noise, so although seven was the lowest sound intensity recorded, the 
tube did not contribute to this, and was silent at the time. 

    

Figure 10 Graphed results for sound intensity from the Gauze Position experiments 

 
 
 

 

 

 

 

                                  Figure 8 Linear relationship of Gauze position results 
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9.6.4. Discussion 
 As predicted, sound intensity and the sine of 3.6 times the gauze position had a linear 
relationship. This relationship is reasonable, as the R2 value is 0.9862, and the data points are 
scattered both sides of the line. However, on this graph there were often two data points for 
the same x value. This is because the sine function increased then decreased so in the first two 
graphs the same y value is reached twice. In an ideal world, these points would always be 
concurrent, and the distance between them represents the error in this experiment. The 
equation which this linear relationship represents is: 

( ) 86.3sin78 += gpI  
Where I, is the sound intensity and gp is the gauze position. The gradient of the linear 
relationship was 78 ± 3, and this represents the amplitude of the sine function (of sound 
intensity vs. gauze position), or the maximum sound intensity achieved. The intercept is 8 ± 2 
dB, and this represents the background noise picked up by the microphone.  
 The linear relationship did not continue when the gauze was in the top half of the tube, as 
the sinusoidal function predicted negative sound intensities, which are impossible.  
 
9.6.5. Conclusions and Reflections 
 The hypothesis was supported; the position of the gauze in the lower half of the tube had a 
sinusoidal relationship with the sound intensity, the relationship is: ( ) 86.3sin78 += gpI  
 It was felt that the errors and uncertainties in this experiment were quite large, and only 
just acceptable, the main reason for this was the unpredictable background noise, so the 
experiment could be improved by conducting the experiment in a silent environment, or one 
with a uniform background noise. 
 
9.7. Heating Time  
 
9.7.1. Hypothesis 
 
 As seen in section 6, the heat absorbed by the gauze is lost through convection to the air, 
conduction to the tube, and in the kinetic energy of the sound wave, so the singing time will 
depend on how long the heat from the gauze is greater than these loses. This is demonstrated 
in the following equation: when 







 ++≤

dt

dT
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16

11 ωρ  

The tube stops singing. Therefore, the singing time depends on the temperature or heat 
absorbed by the gauze just before it starts singing. The temperature of the gauze while heating 

can be modelled by:(Newton’s law of Cooling) ( )gauzebunsen TTkA
dt

dT
−=gauze 

 This means 

that initially, when the gauze is cold, it will heat very quickly so Tbunsen – Tgauze  is large, but as 
the gauze heats up, there will be a smaller temperature difference, until heating the gauze any 
longer won’t make much difference. When you differentiate Newton’ law of cooling and 
heating, you get a logarithmic relationship between the heating time and the temperature of 
the gauze. We could not derive the exact relationship between singing time and temperature 
of the gauze (and therefore heating time), due to the large number of variables in the heat 
transfer equation above, however the logarithmic relationship will still be present. 
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The affect of heating time on the singing time
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9.7.3. Results 

 

 

 

9.7.4. Discussion 
 
 Experimentally, there was a logarithmic relationship between heating and singing time. 
This relationship is reasonable, since the R2 value is 0.9872, and the uncertainties are small, 
but the scatter of points indicates that there may be other factors of consideration. This may 
be due to the effect of heating the air aroung the gauze at the same time as heating the gauze. 
This supports the hypothesis that the relationship between heating time and singing time 
should be logarithmic because singing time is approximately proportional to the temperature 
of the gauze (after heating), and the temperature of the gauze after heating has a logarithmic 
relationship with heating time. 
 
9.7.5. Conclusions and Reflections 
 
 As predicted, increasing the heating time increased the singing time, in the relationship. 

( )heatingging tt ln6.7sin = . It was felt that this experiment could be improved if the gauze could 

be electrically heated, as then the amount of heat could be calculated directly from the amount 
of electrical energy put in. This would simplify equations and reduce error; however, 
unfortunately we did not have access to the voltages required. Further investigations into 
measuring the temperature inside the tube, around the gauze with a thermocouple array would 
help to determine if Newton’s law can really be applied, in that it is justified to treat the 
system as a closed system with just the gauze and the Bunsen burner flame. 
10. Summary  
 The singing tube phenomenon is caused primarily by a compression drawing in cool air, 
which encounters the gauze, heats and increases in pressure, this adds to the pressure 
maximum. The optimum gauze position is determined by where the most cool air will be 
drawn in, and where the cool air’s pressure changes will have the most effect. The Rayleigh 
Criterion and the Rayleigh Index model this, causing the sound intensity, I, to have a 
sinusoidal relationship with gauze position (gp, measured in percent): ( ) 86.3sin78 += gpI  

 The standing wave, which this sets up, has a frequency determined by the tube length and 

diameter through the expression:







+
=

dL
f

4.0

1
5.175. The frequency is also determined by the 

thermal conductivity, k, of the tube material in the relationship: 50000300002 +−=
mc

k
f. The 

standing wave is longitudinal, so is mainly unaffected by changes to the shape of the tube. 

Heating time Singing time 
2 0 
3 0 
4 2 
5 6 
10 13 
30 21 
60 26 
120 29 

Figure 11 Graphed results from the Heating Time experiment 
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 The heat transferred from the hot gauze to the air, tube and acoustic wave can be modelled 

by the expression: 
dt

dT
kAsAv

dt

dT
cm

dt

dT
cm tube

m
air

airair
gauze

gg ++= 22

16
1 ωρ  

This expression and Newton’s law of Cooling lead to the relationship between the time the 

gauze is heated, and the time the tube sings: ( )heatedsings ln6.7 tt = . 

 This applicable and interesting problem has been thoroughly investigated, and many 
relationships have been found. The discovery of the relationship between gauze position and 
sound intensity: ( ) 86.3sin78 += gpI is of particular scientific significance. This is because if 
the maximum sound intensity allowable by a system (such as the vibration limit at which a jet 
engine would start to break up) is known, then this equation can effectively predict were and 
were not a heat source must be located in order to prevent these dangerous vibrations. For 
example, the optimum point of fuel ignition in a jet engine can be determined. 
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8 Problem № 11: Singing tube 
 

8.1. Solution of Australia 

8.1.1.Review of solution of Australia 

 
Review of  the solution of the problem number 11 – Singing tube 

 
A tube open at both ends is mounted vertically. Use a flame to generate sound from the tube. 
Investigate the phenomenon. 
 
The problem itself is very interesting from both theoretical and experimental point of view. It 
opens possibilities to perform number of experiments on the high-school level with a great 
probability of success. Theory of the problem can be found in many articles under the key-
words of Singing tube or Rijke tube. However, these solutions are not complete and allow 
further investigation of dependencies.  
 
Solution from Australia 
 
Solution presented by Kathryn Zealand fully develops the quality of the assignment into a 
serious high-quality paper. The structure is appropriate; begins with basic definitions and 
interpretation of the problem, continues by theory explanation and culminates by extensive 
comparison of theoretical and experimental results. All relevant parameters as length and 
diameter of the tube, shape of the tube, material of the tube, position and intensity of the heat 
source were examined. As a kind of “bonus” also exotic configurations as reversing of the air 
flow by vacuum cleaner or using “cold source” rather than “heat source” in the upper half of 
the tube where used. I would like to cite one sentence from a discussion part of the paper, 
covering the tube material dependences: “Although the hypothesis was proved incorrect, more 
interesting discoveries were made as a result”. It reflects the honesty, with which the work 
was performed and which is so often missing during YPT presentations and discussions. 
Only minor suggestions to improve the paper can be done. The layout could show better by 
using a smaller line-spacing; this would also reduce the length of the paper, 26 pages may be 
considered as too much. Also pictures and graphs should be placed strictly within the 
printable area of the page and formulas should be centered in extra lines. Usage of gauze 
instead of the flame itself could be discussed more thorough. 
In summary, the presented solution goes far further than I would expect. It is complete, 
accurate and clearly written. In IYPT grading I would not doubt to show the highest grade 10.  
 
 
Dr. Martin Plesch 
Institute of Physics 
Slovak Academy of Sciences 
Dubravska cesta 9 
Bratislava 845 11 
Slovakia 
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9. Problem №12: Rolling magnet 
 

9.1. Solution of Australia 
 

Problem №12: Rolling magnet 
 
Alexandra Price, Gregory Terrace, Spring Hill 4000, QLD Australia, Brisbane Girls Grammar 
School, s106863@bggs.qld.edu.au 
 
The Problem 
 
Investigate the motion of a magnet as it rolls down an inclined plane. 
 
 

Abstract: 
An investigation into the motion of a magnet as it rolls down an incline seems somewhat 
monotonous when first examined. However, extensive experimentation and research into this 
problem yields some unanticipated results. The Earth’s magnetic field plays a significant role 
in changing the path of the magnet as it rolls down a plane. This report contains four principal 
investigations. First, the influence of the Earth’s magnetic field on the motion of a magnet 
was investigated and it was found that the magnet deviates to different extents, depending on 
the orientation of the magnet with respect to the magnetic field. Second, the effect of varying 
the angle of incline was then examined. Third, the effect of changing the material of the 
incline was investigated using wood and aluminium ramps. Finally, further experimentation 
into the effect of the Earth’s magnetic field’s influence on neodymium magnets (super 
magnets), although not quantitatively analysed, showed that the magnet’s strength can affect 
the motion of the magnet to a greater extent than the Earth’s magnetic field.  
 

1. Interpretation 

1.1 Interpretation of Problem 
The problem states “investigate the motion of a magnet as it rolls down an inclined plane”.  
The Oxford English Dictionary (1) defines a magnet as “a piece of iron or steel to which the 
characteristic properties of loadstone have been imparted, either permanently or temporarily, 
by contact with another magnet, by induction, or by means of an electric current.” Rolling is 
the “action (on the part of something) of turning over and over” (1). In the case of a cylinder, 
it rotates around the centre of mass. Motion is the “process of moving” or of “undergoing a 
change of place” (1).  
 

1.2 Assumptions 

This investigation has three principal assumptions. First, it is assumed that the magnet is 
cylindrical and therefore exhibits a rolling motion when released at the top of an inclined 
plane. Second, it is assumed that the frictional forces exhibited on the magnet during its 
motion are sufficient to ensure the magnet only rolls down the plane and does not exhibit a 
sliding behaviour. Third, it is assumed that the environment the magnet is in has little 
interaction with the magnet (ie. no steel beams, air resistance).  
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2. Theory 

2.1 Motion of a cylindrical object 

2.1.1 Dynamics Perspective 
As the magnet rolls down the inclined plane, its magnetic field interacts with the Earth’s 
magnetic field. The motion of the magnet down the slope is most easily analysed by breaking 
it into its constituent components (figure 1).  
 

 

 

 

 

 

 

 
 
For a cylinder to roll, static friction is required. It is assumed that the static friction coefficient 
(µs) is always large enough to satisfy (2): 

θµ cosmgf s≥  

where m  is the mass of the cylinder, g is acceleration due to gravity and θ  is the angle. 
Taking this into account, the minimum static frictional force needed for rolling can be 
calculated 

θsin
3

1
mgF =  

So, for a cylinder of mass 0.069kg, and an angle of 1.15° to the horizontal, the force down the 
plane is calculated to be 0.0045N down the plane. The translational motion of the rolling 
magnet along the incline was calculated (2-4) 

mafmgF =−= θsin  
 
So, for the same cylinder on the same incline, the force along the incline is 0.0090N. The 
rotational motion of the centre of mass (torque) was analysed (3) 

ατ cmI=  

where α is the angular acceleration and 
R

a=α  (3) (a is acceleration  and R is the radius of the 

cylinder) Icm is the inertia at the centre of mass. For this example, the torque calculated was 2.86 
x 10-5 N around the magnet.  Torque, τ, can be thought of as a force at a distance, acting to turn 
the magnet. The best way to calculate torque is to split it up into components (figure 2).  
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Figure 1 Components of a Rolling Cylinder
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To calculate the value of the torque, the following equation is used (4): Fr
vvv ×=τ  

where F
v

is the force vector and r
v

is the vector from axis of rotation to point on which F
v

 is 
acting.  
In order to calculate the torque accurately, the restoring torque per unit of displacement was 
calculated. This enabled the effective work of the torque at any angle to be calculated and 
hence, the forces acting on the magnet. The period of oscillation was calculated 

k

I
T π2=  

where I is the moment of inertia of the oscillating body and k is the restoring torque per unit 

displacement in radians. For a solid disk, such as a cylindrical magnet, the moment of inertia 

at the centre of mass is equal to (3) 

2MRIcm = /2 

Where M is the mass of the cylinder and R is the radius. The period of oscillation for the 
magnet used in the following experiments was measured by suspending it on a string and as a 
result, the moment of inertia for the oscillating cylindrical body. In this case, k was found to 
equal 4.78 x 10-4 Nm/radian. 
  

2.1.2 Energy Perspective 

The motion of a cylindrical object can also be analysed from an energy perspective where its 
initial gravitational potential energy (GPE) is converted into kinetic energy as it rolls down 
the incline (5) 

2

4

3
mvmgh =  

Where the kinetic energy incorporates both linear and rotational kinetic energy (3) 

222

4

3

2

1

2

1
mvImv cm =+ ω  

Figure 2 Components of torque for a rolling cylinder
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with ω representing the angular momentum of the cylinder. The velocity of the centre of mass 
of a sliding cylinder is (3) 

ghvcom 2=  

However, for a rolling cylinder, the velocity at the centre of mass is less than that of a sligin 
cylinder due to the potential energy being converted into both linear and rotational kinetic 
energy. Therefore, the velocity of the centre of mass of a rolling cylinder is (3) 

ghvcom 3

4=  

For example, when the height of the ramp is 0.020m, the velocity at the centre of mass of a 
rolling cylinder is 0.511ms-1. 
 

2.2 Effect of the Earth’s magnetic field 

2.2.1 The nature of the Earth’s magnetic field 
The Earth’s north magnetic pole is located near the south geographic pole and the Earth’s 
south magnetic pole is located near the north geographical pole (5). The angle between the 
Earth’s north geographic pole and its North magnetic pole is called the angle of declination. 
Presently, this angle is approximately 10° (6).  The Earth’s south magnetic pole is actually the 
same as the south pole of a bar magnet and the Earth’s north magnetic pole is actually a north 
pole of a bar magnet (figure 3). However, the magnetic axis is not aligned in the same 
position as its geographic axis. In fact, magnetic north is approximately 1000km away from 
geographic north (5). This is best visualised by figure 3 where the red arrows represent the 

Earth’s magnetic field lines and the black circular arrow in 
the centre represents the direction of the Earth’s rotation. 
The angle of the Earth’s magnetic field in Brisbane is 
about 56° to the horizontal (ground) (6) (figure 4). 
However, it is very weak at the surface because the surface 
is along way from the Earth’s dipole, having a total 
intensity of 0.05mT (6,7). The Earth’s magnetic field 
extends over such a large area that the strength of the 
magnetic field is very uniform if you look at it over a large 
region (7).  
 

 

 

 

 

 

 

 

Ground 

56° 
N 

(geographic) 
 

S 
(geographic) 

Figure 4 The Angle of the Earth’s Magnetic field in Brisbane, Australia (5) 
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2.2.2 The effect of the Earth’s magnetic field on a magnet 
 

As a result of like poles repelling each other and unlike poles attracting each other (8), the 
Earth’s magnetic field interacts with the rolling magnet without physical contact (9). As a 
magnet rolls down a plane from magnetic south to magnetic north (geographical north to 
south) it deviates because of interactions with the Earth’s magnetic field depending on the 

orientation of the magnet. As a magnet rolls down 
a plane, its north pole will attract to the Earth’s 
magnetic South Pole, causing it to rotate. At the 
same time, the magnet’s South Pole is attracted to 
the Earth’s magnetic north pole. This concept is 
best envisaged by examining figure 5 where the 
ramp is positioned so that the magnet rolls down 
the incline from magnetic south to magnetic north. 
The best way to think of this interaction in order to 
investigate it quantitatively is to think of the 
magnet and the Earth’s magnetic field as two 
separate magnets. 

 

 

2.3 Aluminium 

2.3.1 Eddy Currents 

A cylindrical magnet has a magnetic field travelling from one pole 
to the other (figure 6). As the magnet rolls down the aluminium, its 
magnetic field cuts the aluminium sheet producing eddy currents 
which repel the magnet.  
Eddy currents are caused by a moving magnetic field as it 
intersects a conductor (5). The relative motion causes a circulating 
flow of electrons or currents within the conductor.  
 
 
 
 

These circulating eddies of current create 
temporary electromagnets with magnetic fields 
that oppose the magnetic field of the magnet 
(figure 7).  

 

 

2.3.2 Lenz’s Law 

Lenz’s law states that ‘the current induced in a conductor by a changing magnetic field is in 
such a direction that its own induced magnetic field opposes the change that produced it’ (5).  
In the case of the magnet, as it rolls down the aluminium plane, eddy currents are induced and 
the eddy current’s own induced magnetic field opposes the change that produced it (ie. the 
magnet). 

N 

S 

N S S N 

Figure 5 Effect of the Earth’s 
 magnetic field on a magnet 

Figure 7 Eddy Currents 

Figure 6 Eddy Currents

N S 
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3. Experimental  
 
3.1 How will varying the direction of the ramp affect the motion of the magnet? 
 
3.1.1 Observations 

The magnet was observed to deviate less at the start of the roll and deviate more near the end 
of the plane. 
 

3.1.2 Results 
The magnet’s magnetic field strength was measured to be 36mT using a Pasco magnetic field 
sensor. 
 
Deflection - Wood 

Direction 

travelling 
N NE E SE S SW W NW 

Mag N E W SE NW S N SW NE W E NW SE N S NE SW 

Average 3.87 3.89 4.04 4.10 4.07 4.01 4.27 4.19 4.03 4.00 3.99 3.98 4.14 4.09 4.12 4.16 

Spread 0.10 0.12 0.25 0.15 0.11 0.23 0.19 0.20 0.11 0.19 0.25 0.15 0.18 0.28 0.16 0.21 

Deviation 0.06 0.07 0.17 0.08 0.07 0.14 0.12 0.12 0.06 0.11 0.18 0.08 0.09 0.20 0.11 0.11 

Where ‘Mag N’ represents the direction the north pole of the magnet points to. 

 
 
 
3.1.3 Analysis of Results 

 
This graph represents the deviation of the magnet when it rolled down the wooden plane. 
The two x-values for each of the magnetic directions represent the magnet’s north pole 
facing one direction and then flipped (ie. facing east, then facing west). The negative 
values indicate that the magnet travelled in a clockwise direction and the positive values 
indicate that the magnet travelled in an anticlockwise direction.  

Table 2 Time Results 

Rolling Magnet Deviation - Wood 
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3.1.4 Discussion 

The graph indicating the deviation of the magnet as it rolls down the wooden plane shows that 
changing the direction of the ramp results in a change in the deviation of the magnet i.e. the 
deviation of a magnet is dependant on the direction of the ramp, supporting the hypothesis. 
Although the Earth’s magnetic field only has a total intensity of 0.052mT in Brisbane, the 
angle of inclination of the Earth’s magnetic field (56° to the horizontal) could have an effect 
on the magnet’s motion as it rolls down the inclined plane. For example, as the magnet rolls 
down the ramp towards north, with its north pole facing east, the magnet deviates 
significantly in an anticlockwise direction. This is because the north pole of the magnet is 
‘north-seeking’ and is therefore attracted to the Earth’s magnetic north pole. However, when 
the magnet’s north pole was facing east, and rolling in a southerly direction, the magnet only 
slightly deviated in an anticlockwise direction. The variation in deviation when comparing the 
deviation of the magnet rolling north and rolling south is attributed to the magnitude and 
direction of the resultant vectors produced from the Earth’s magnetic field and the angle of 
incline of the ramp. Where the red arrow represents the direction the magnet is traveling on 
the ramp, at an angle of 1.15°. The blue arrows represent the inclination of the Earth’s 
magnetic field and the dotted arrows represent the resultant vectors from each addition. This 
force is translated into torque and the magnet is rotated. When the magnet rolls in a southerly 
direction, the resultant force is nowhere near as large, as a result, little deviation occurs.  
 

The increase in deviation as the magnet 
rolled down the plane (an observation) is 
attributed to it traveling at a faster speed 
near the end and the effect of torque. This 
means that friction plays less of a role in 
opposing the force that is turning the magnet. It also means that once the magnet has been 
forced slightly off its straight path, the deviation will continue to grow regardless of external 
magnetic forces. This deviation (excluding any external magnetic force) can be modeled by 
the equation αθ cossinmgF =  and used to estimate the final position of the magnet as it 
rolls down the plane. In a real situation, with the external magnetic force present during the 
whole experiment, the deviation would be greater than calculated using this formula. 

Rolling Magnet Time
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Figure 11. Resultant vectors 
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The graph of time versus direction shows, within 
experimental error, that the time taken for a magnet to 
roll down the plane with its north pole facing one 
direction is the same as when the magnet’s north pole is 
facing 180° (the other direction). When the magnet was 
rolling north, it rolled down the ramp in the smallest 
time. This is probably due to the fact that the magnet is 
rolling down ‘with’ the Earth’s magnetic field. This 
would have a resultant force with a large vector down 
the plane, meaning that the magnet would receive an 
extra ‘push’ of energy that it would not receive if it was 
traveling any other direction. The peak in time when 
traveling southeast is attributed to the magnet deviating 
the magnet in a clockwise direction for both trials. 
 
The magnet making a moderately loud sound as it rolled 
down the ramp is attributed to the 15% friction between 

the two surfaces which was converted into heat and sound energy. Every effort was made to 
ensure the trials were as analogous as possible. Each time the ramp was reorientated, the 
magnet was placed at least twenty metres away to ensure minimal interaction. Experiments 
were also conducted in a wooden house on a wooden table and as far away from any steel 
beam supports as possible. However, it is highly likely, due to possible compass errors, that 
the ramp could have been misaligned by several degrees, therefore altering the results. During 
experimentation, the ramp was wiped down with a slightly damp cloth and left to dry every so 
often to try and prevent excess friction due to dust and moisture particles. In order to 
minimize error in timing, the person with the stop watch was the one who released the 
magnet. Much thought was put into deciding the most accurate process to measure the 
deviation of the magnet.  
 
3.1.9 Conclusions 

As the magnet rolls down the ramp, it tries to align its poles with the Earth’s magnetic poles 
and as a result, the magnet deviates as it rolls. The deviation of the magnet from the weight 
force providing the magnet has been misaligned (due to an external magnetic force) can be 
modeled by the equation αθ cossinmgF =  and used to estimate the final position of the 
magnet as it rolls down the plane. 
 
3.2 How will varying the angle of incline affect the motion of the magnet? 
 
3.2.1 Hypothesis 
As the angle of incline is increased, the deviation will increase until a critical angle is reached. 
 
3.2.2 Observations 
By raising the angle of the incline, the magnet was observed to have deviated more. However, 
if the ramp was raised past a critical angle (around 25 degrees), the magnet exhibited a sliding 
behavior instead of rolling behavior.  
 

 

mgsinθ 

Mgsin(θ)cos(α) 

α 
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3.2.3 Results 

 

  3.5° incline 7° incline 10.5° incline 14° incline  17.5° incline 21° incline  

Average 20.8 22.0 22.8 24.2 25.4 27.1 

Spread 0.8 0.9 0.5 0.7 0.9 0.5 

Deviation 0.5 0.5 0.3 0.4 0.5 0.3 

 

3.2.4 Analysis of Results 

 

 

 

 

 

 

 

3.2.5 Discussion 

The graph and its y-intercept value of 19.4 ± 0.3, indicate that, within experimental error, the 
deviation of a magnet from the centre line is directly proportional to the angle of the incline 
the ramp is placed at, provided the material and all other physical conditions remain constant. 
The slope of the graph of deviation from centre line versus angle of incline within the 
calculated experimental error of 0.02 equals 1.23 meaning that the deviation of the incline 
increases at the rate of 1.23cm/°. So, for every degree the incline is increased by, the deviation 
of the magnet from the centre line is increased by 1.23cm.  The straight trendline and its R2 
value of 0.9899 indicates that the ratio of deviation to angle of incline is constant up to and 
including an angle of incline of 21°. The results therefore support the hypothesis saying that 
as the angle of incline is increased, the deviation will increase. However, using the graph, the 
relationship between the deviation and the angle of incline once the angle of incline is above 
21° was not able to be modelled.   
 
The sliding behavior exhibited by the magnet occurred because the resolved component of the 
weight force down the plane provides a greater acceleration negating the frictional force that 
turns it ie. θµ cosmgf s> . Given that the sliding behavior was observed when the angle of 

inclination was greater than 25°, an approximation for the coefficient of static friction can be 
calculated. To do this, we assume that the force down the plane (F) is equal to the force of 
friction (f) and for the purpose of the following calculation, it is assumed that 25° is the angle 
at which the rolling cylinder began to slide. 

Table 3 Deviation Results 

Deviation from Centre Line Vs Angle of Incline

3.5° incline
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10.5° incline
14° incline 

17.5° incline
21° incline 
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Given the inaccuracy of this calculation, due to having to guess the critical angle, this 
calculation of the coefficient of static friction, sµ , is further substantiated by Kurtus which 

states that the coefficient of static friction for metal on glass is 0.5-0.7 (9). If the magnet 
began to exhibit a sliding behaviour, the magnet would travel faster down the plane than a 
rolling magnet because all of a sliding magnet’s potential energy is converted into linear 
kinetic energy whereas a rolling magnet’s potential energy is converted into both linear and 
rotational kinetic energy.  
Due to the fact that a camera was unable to be used in recording the deviation, there is more 
likely to be error associated with the measurement of the deviation. While every effort was 
taken to eliminate error, the experimentation was conducted inside a concrete physics 
laboratory building which increases the likelihood of errors in the measurements due to an 
interaction with other magnetic materials, such as a steel support beam. I was also unable to 
find a level, so the longitudinal level was unable to be verified. There were also some 
significant vibrations occurring in the classroom due to other people conducting experiments 
with low frequencies. These vibrations may have caused error in the deviations. 
 

 

3.2.6 Conclusions 
The results support the hypothesis in saying that within experimental error, a plot of deviation 
of magnet from the centreline versus angle of incline results in a linear relationship up until 
and including 21°. 
 
3.3 How will varying the material of the incline affect the motion of the magnet? 

3.3.1 Hypothesis 

Using an aluminium incline, as opposed to a wood incline, although having less friction, will 
result in a slower time and a larger deviation of the magnet, due to eddy currents being 
created as the magnet moves and acting to oppose the motion of the magnet. 
 

3.3.2 Observations 

For the majority of trials, the magnet was observed to deviate more on the aluminium plane 
than on the wooden plane. The time taken for the magnet to roll down the aluminium plane 
was significantly greater than the time taken to roll down a wooden plane.  
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Mag N E W SE NW S N SW NE W E NW SE N S NE SW

Average 5.36 5.36 5.84 5.83 6.10 5.88 6.46 6.31 5.65 5.83 5.48 5.49 5.78 5.71 5.98 5.98

Spread 0.12 0.09 0.18 0.24 0.13 0.14 0.19 0.14 0.32 0.33 0.20 0.30 0.33 0.26 0.23 0.24

Deviation 0.07 0.06 0.07 0.15 0.08 0.07 0.13 0.08 0.19 0.18 0.12 0.15 0.17 0.19 0.12 0.14

N NE E SE S SW W NW

Results 

Deflection - Aluminium               

 N  NE  E  SE  S  SW  W  NW  

Mag N E W SE NW S N SW NE W E NW SE N S NE SW 

Average 90.1 -97.8 76.2 -87.5 10.0 -17.3 -44.8 43.4 -78.7 72.4 -54.6 42.6 21.9 -26.1 88.1 -78.8 

Spread 4.0 3.0 3.0 5.0 3.0 2.0 4.0 7.0 5.0 5.0 5.0 5.0 2.0 4.0 5.0 6.0 

Deviation 2.1 1.8 1.8 3.5 2.0 1.3 1.8 3.6 2.7 2.6 2.6 2.6 1.1 2.1 2.9 3.8 

 

 

Analysis of Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Deviation on Aluminium Results 

Table 5. Time on Aluminium Results 
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Rolling Magnet Time
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3.3.3 Discussion 

The graph showing deviation of the magnet on material versus incline direction shows that the 
deviation of the magnet, when rolled down an aluminium ramp is much greater than on wood. 
All lines follow similar curved relationships as the incline direction changes.  
The deviation of the magnet on both aluminium and wood is the same when the ramp rolled 
east. The minimum deviation for the magnet on aluminium occurs when it is travelling east 
and west (approximately). This is because as the magnet rolls down the plane towards the east 
(for example), the eddy currents produced are in a 

direction perpendicular to the 
earth’s magnetic field. As a result, 
there is no parallel force vector 
which adds to changing the 
direction of motion.  
When the magnet is rolling due 
north on aluminium, the eddy 
currents have to act against the 
Earth’s magnetic field 
 
 
 
 
 
 
 

 
 
 
The time taken for the magnet to roll down the aluminium plane was significantly greater than 
the time taken to roll down a wooden plane which is attributed to eddy currents opposing the 
magnet’s motion as it rolled down the plane.  
In order to attempt to calculate the effects of the eddy currents produced in the aluminium, it 
was assumed that both the aluminium and wood had a similar static coefficient of friction, 

sµ . In actual fact, the wood had a slightly larger sµ . This was measured by rolling down a 

Figure 12. Rolling East on Aluminium 

Figure 13. Rolling North on Aluminium 
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non-magnetic cylinder of similar size to the magnet down each plane and measuring the time 
taken for it to reach the end of the ramp. 
 
 

 

With a temperature increase of 2.74x10-6K, even with the large number of trials completed, 
the temperature increase would be negligible because any increase would be lost to the 
surrounding environment. Using the previous calculation for current and as a result EMF, it is 
possible to measure the magnetic field created to oppose the motion of the magnet as it rolled 
down the aluminium plane.  
Where FE is the force of the electric field, FB is the force of the magnetic field, q is the charge 
on an electron, E is the electric field strength, v is velocity, B is the magnetic field strength, V 
is the voltage, d is distance, EMF is the induced voltage and L is the length of the conductor. 
For the purpose of this calculation, the length of the conductor was taken to be the diameter of 
the eddy currents combined. Given that the magnetic field strength of the magnet was found 
to be 36mT, the value for the eddy current’s magnetic field strength of 7.35mT is acceptable. 
 

 

 

 

 
 
The deviation of the magnet on aluminium when travelling south was 75% of the deviation 
value when the magnet was rolling north. However, the deviation of the magnet when rolling 
south on wood was a mere 25% of the deviation recorded when the magnet rolled north. This 
is most likely attributed to the eddy currents creating a significantly stronger force than the 
Earth’s magnetic field, meaning that it has more influence over the motion of the magnet than 

Energy lost by magnet: 
On wood (Ew) = 0.002J 
On aluminium (Eal) = 
0.010J 
Eal – Ew = 0.008J 
 
Area of eddies = 
0.0025m2 
Av vel wood (vw) = 
0.48ms-1 

Av vel aluminium (val) 
= 0.33ms-1  
 
Resistance of Al = 2.65 
x 10-5 Ω 
Weight of whole Al = 
3.24kg 
Vol of Al = 0.0012m3 
 

Calculation of Current: 
P = I2R = J/s = 0.008J/5.81s = 0.00138J/s 
 
I2R = 0.00138J/s 
I = (0.00138/2.65x10-5)0.5 = 7.2 amps 
 
EMF=IR = 7.2 x 2.65x10-5 = 1.9x10-4V 
 
Calculation of temperature increase: 
Shc = Energy x mass-1 x Temperature-1 = J x kg-1 x K-1 

 
Therefore, 
T = Energy x mass-1 x specific heat-1 = J x kg-1 x (J x kg-1 x K-

1)-1 = K 
 
T = 0.008J/3.24kg/900 = 2.74x10-6K 
 
There is no temperature increase which could be observed. 

v = 0.33ms-1 
EMF = 1.9x10-4V 
L = 0.08m 
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the Earth’s magnetic field does. On both the wood and aluminium ramps, the time taken for 
the magnet to roll down the plane was greatest when it rolled in a south east direction and 
shortest when it rolled north. Although it is very difficult to produce a justifiable explanation 
as to why this occurred, the most likely cause is due to the angle of inclination of the Earth's 
magnetic field. 
Errors for this experiment could have occurred due to the aluminium becoming dirty and 
irregular. The error associated with this was minimised by wiping down the aluminium 
regularly with a damp cloth and leaving it to dry. The deviation scale was sticky taped onto 
the aluminium surface, so this could have interrupted the most of the magnet just before it 
crossed the deviation scale. This error was minimised by ensuring a single piece of sticky tape 
ran across the front edge of the scale and was pressed flat against the aluminium. A hand was 
placed on the ramp after each trial to ensure any residual currents in the aluminium were 
removed. The same precautions and error minimising steps were taken in this experiment as 
in experiment one.  
 
3.3.4 Conclusion 
The results support the hypothesis in saying that a magnet deviates to a greater extent on an 
aluminium plane than a wooden plane due to eddy currents created in the aluminium. These 
eddy currents oppose the motion of the magnet, causing it to roll down the ramp at a slower 
speed than on a wooden incline. 
 

3.4 Investigation into motion near the edge (qualitative) 
If the plane is aligned with the North-South field lines, the magnet still exhibits turning 
behaviour due to the eddy currents present in the aluminium. However, as the magnet 
approaches the edge of the aluminium, there are only eddy currents on one side of the magnet. 
This results in the magnet travelling back into the middle of the aluminium. 
 

4 Conclusions 

4.1 Conclusions for nonconductive planes 
The magnet deviation depends on which way the poles are orientated due to interaction with 
the Earth’s magnetic field. The larger the angle of the plane, the higher the deviation of the 
magnet. 
 

4.2 Conclusions for conductive planes 
When a magnet rolls down an aluminium plane, eddy currents are created in the aluminium 
which oppose the magnet’s motion down the plane. When super magnets roll down an 
aluminium plane, the eddy currents are stronger which produces a stronger correcting force. 
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