plynné vrstvy bránící vypařování se nazývá Leidenfrostův efekt a odpovídá mu tzv. blánový var. Jak se snížuje teplota kuličky, tak se porušuje dynamická váha mezi vznikem a zánikem této vrstvy a ta se pak při určité teplotě (v případě použité kuličky 85,08 K) odpoutá od povrchu kuličky, což se projevilo prudkým vzrůstem intenzity vypařování. Pak následuje tzv. bubleinkový var.

4. Dosažené výsledky

Snímání grafu závislosti intenzity vypařování na čase — experiment — s teoretickou závislostí intenzity vypařování na čase umožnilo zpřesnit postup teoretického řešení. U bubleinkového varu se závislost intenzity vypařování na čase shoduje s teoretickým výpočtem.

5. Závěr

Naměřené hodnoty jsou v souladu s výsledky provedenými na ostatních pracovištích řešících daný problém.

(23) Název: Mince
Č. úlohy: 2
Text: Z jaké výšky musí být mince upuštěna hlavou nahoru, aby pravděpodobnost dopadu hlavou nebo orlem byla stejná?

1. Úvod

Pouštění, popř. házení mince je jeden ze způsobů řešení některých sporů — vychází z předpokladu, že při spouštění z velkých výšek je pravděpodobnost dopadu hlavou i orlem nahoru stejná. V následujícím článku se pokusíme naznačit, kde leží nejmenší taková výška.

Upouštěme-li minci pouze volně z ruky, je velice obtížné změřit výšku jejího geometrického středu. Proto jsme používali elektromagnet s nástavcem z tenkého plechu. Jedinou mincí, kterou jsme při experimentech používali, byla česká peříkoruna; nechali jsme ji dopadat na dřevotřískovou desku s umělým povrchem. Parametry pak byly následující: výška mince – 1,85 mm; poloměr mince – 11,5 mm; hmotnost mince – 4,57 g; součinitel smyskového tření mince s podložkou – 0,12; koeficient restitution mezi mincí a podložkou – ~ 0,88 pro výšku okolo 20 mm.

2. Experiment

Mincí se nepodaří upustit vždy stejně — při každém pokusu bude mít trochu jinou počáteční úhlovou rychlost. Jejich rozdělení jsme určovali pouze experimentálně. Schéma aparatury je na obr. 23–1: paprsek laseru zaměřený zespodu na minci byl propouštěn štěrbinou na kotouči otáčejícím se rychlostí 100 ot/s, čímž jsme získali krátké pulsy s frekvencí 100 Hz.
Fotografovali jsme odrazy mince (na jedné straně byla přilepena zrcadlová fólie) na vhodné podložce, na níž jsme ze vzdálenosti sousedních stop zjistili úhlovou rychlost otáčení mince.

Přesnost této metody závisí především na kvalitě povrchu, od kterého se paprsek odráží, v druhé řadě pak udání vzdálenosti na stínítku (v našem případě pomocí svítivých diod o průměru 3 mm) a v rozlišení fotografii. Ukázka typické fotografie je na obr. 23-2. Rozdělení počátečních úhlových rýchlostí je znázorněno na obr. 23-3.

Z fotografii je dále patrné, že prvních několik stop leží rovnoměrně za sebou v přímcé (10 stop při 100 Hz je ekvivalentní s 5 cm, 15 pak s 11 cm) — vliv obtékání z takových výšek je na fotografických nepozorovatelný. Zároveň je zřejmé, že v této době padá mince v jedné rovině.

Obrázek 23-1: Aparatura pro měření distribucí.

Obrázek 23-2: Příklad fotografie pro měření distribucí (negativ).

Obrázek 23-3: Rozložení počátečních úhlových rychlostí.
3. **Pracovní hypotéza**

Stejná pravděpodobnost dopadu hlavou i orlem mince upuštěné hlavou nahoru závisí na poloměru mince.

4. **Teoretické řešení — model**

Jak vyplývá z výše uvedeného experimentu, můžeme pro výšky do 10 cm uvažovat pouze ráz mince v rovině, což podstatně zjednodušuje celé řešení. V další kapitole vyřešíme obecnou srážku dvou těles v rovině (z hlediska zákonů o zachování hybnosti těles) a v za ní následující kapitole upravíme některé vztahy pro konkrétní případ rázu mince na podložku.

a) **Obecná srážka dvou těles v rovině**

Mějme dvě tělesa o hmotnostech \(m_1\) a \(m_2\), resp. v momentech setrvačnosti \(J_1\) a \(J_2\), pohybující se rychlostmi \(v_1\) a \(v_2\), v souřadném systému definovaném tak, že počátek je v místě styku obou těles a osa \(x\) je k oběma tělesům tečná. Rychlosti \(v_i\) (\(i=1,2\)) pak můžeme rozložit do směrů \(x\) a \(y\), odpovídající složky pak označme \(v_{ix}\) a \(v_{iy}\) (viz. obr. 23-4). Indexem 0 vyjádříme stav těsně před rázem, indexem \(f\) stav těsně po rázu.

\[
\begin{align*}
&[a_1, b_1] \\
&v_{1x} \quad v_{1y} \quad v_{2x} \quad v_{2y} \\
&[a_2, b_2]
\end{align*}
\]

Obrázek 23-4: Popis rázu dvou těles.

V každém okamžiku srážky platí zákony zachování hybnosti a momentu hybnosti, které napíšeme ve tvaru

\[
\begin{align*}
 m_i(v_{ix} - v_{ix0}) &= \pm P_i, \quad (23.1) \\
 m_i(v_{iy} - v_{iy0}) &= \pm P_n, \quad (23.2) \\
 J_i(\omega_i - \omega_{i0}) &= \pm b_iP_i \mp a_iP_n, \quad (23.3)
\end{align*}
\]

kde \(a_i\), resp. \(b_i\) je vodorovná, resp. svislá složka polohového vektoru těžiště a \(P_n\), resp. \(P_i\) je tečný, resp. normálový impuls (horní znaménko přísluší tělesu 1, dolní tělesu 2). Definujeme relativní rychlost klouzání \(S\) a kompře \(C\) vztahy

\[
\begin{align*}
 S &= v_{ix} + b_i\omega_i - (v_{ix} + b_i\omega_i), \quad (23.4) \\
 C &= v_{ix} + a_i\omega_i - (v_{ix} + a_i\omega_i), \quad (23.5)
\end{align*}
\]

Po dosazení z rovnic (23.1 – 23.3) dostaneme
\[S = S_0 + B_1 P_1 - B_2 P_n, \]
\[C = C_0 - B_3 P_1 + B_2 P_n, \]
\[B_1 = \frac{1}{m_1} + \frac{1}{m_2} + \frac{b_1^2}{J_1} + \frac{b_2^2}{J_2} \]
\[B_2 = \frac{1}{m_1} + \frac{1}{m_2} + \frac{a_1^2}{J_1} + \frac{a_2^2}{J_2} \]
\[B_3 = \frac{a_1 b_1}{J_1} + \frac{a_2 b_2}{J_2} \]
\[S_0 = v_{1_o} + b_1 \omega_{i_o} - \left(v_{2_o} + b_2 \omega_{2_o} \right) \]
\[C_0 = v_{1_o} - a_1 \omega_{i_o} \left(v_{2_o} - b_2 \omega_{2-o} \right) \]

Nyní srážku vyšetříme tzv. grafickou metodou (viz [23.1]). Průběh rázu přeneseme do souřadnic \([P_n, P_s]\) a budeme sledovat dráhu imaginárního bodu \(Q = [P_n, P_s]\). Na začátku rázu je nutné \(Q = 0\) a normálový impuls \(P_n\) bude zřejmě v průběhu celého rázu monotónně růst. Přírůstek \(S = 0\) odpovídá nulovému klouzání, \(C = 0\) pak maximální kompresi.

Zavedeme několik pomocných bodů: Průsečky přímkám limitního tření s přímkami maximální kompresy \((P_{nc})\) a nulovému klouzání \((P_{ns})\) jsou definovány vztahy:

\[P_{ns} = \frac{S_0}{B_3 + B_1 f \text{sgn} S_0} \]
\[P_{nc} = \frac{C_0}{B_2 + B_2 f \text{sgn} S_0} \]

Průseček \(P_{nSC}\) přímk \(S = 0\) a \(C = 0\) vyjádříme jako

\[P_{nSC} = \frac{S_0 B_3 + C_0 B_1}{B_3^2 - B_2 B_3} \]

V první fázi rázu sleduje bod \(Q\) přímku limitního tření, definovanou vztahem \(P_r = -f P_n\) \(\text{sgn} S_0\) (pokud je to možné), a to do okamžiku, než protne jednu z přímk maximální kompresy \((C = 0)\) nebo nulového klouzání \((S = 0)\). Protně-li dráha bodu \(Q\) přímkou \(C = 0\), pak konečný normálový impuls \(P_{nf}\) je určen vztahem \(P_{nf} = P_{nc} (1 + \varepsilon)\), kde \(\varepsilon\) je koeficient restitutione.

K jiné situaci dojde, když dráha bodu \(Q\) protne přímku \(S = 0\). Potom, podle velikosti tření a směru klouzání, mohou nastat tři situace: bod \(Q\) bude sledovat přímku nulového klouzání (je
k dispozici dostatek tření) nebo se bude nadále pohybovat po přímce limitního tření (pokud se nezmění sgn S) či po přímce obráceného limitního tření (je definována vztahem \(P_n = 2P_nS + fP_t \), sgn \(S_0 \), pokud se obráti směr klouzání.

Užitím absolutní hodnoty funkce sgn dostaneme jen několik málo případů:

a) \(P_{ns} \leq 0 \), resp. \(P_{nc} (1 + \varepsilon) \leq P_{ns} \) (viz. obr. 23-5a): přímka \(S = 0 \) nemůže být protáta, protože její průsečík s počáteční fází leží pod osou \(P_n \), resp. nad konečným bodem srážky \(P_{nf} \) a \(P_{tf} \) určíme z následujících vztahů:

\[
P_{nt} = (1 + \varepsilon)P_{nc}
\]
\[
P_{t} = -fP_{nt} \text{ sgn } S_0
\]

b) \(P_{ns} > 0 \) a \(P_{nc} (1 + \varepsilon) > P_{ns} \) a \(\left| \frac{B_3}{B_1} \right| \geq \frac{1}{f} \) (na obr. 23-5b): přímka \(S = 0 \) je během srážky protáta a zároveň je její sklon větší než sklon přímky limitního tření. Bod \(Q \) se pak pohybuje právě po přímce \(S = 0 \) (je k dispozici tolik tření, že se zabrání klouzání) a ráz je ukončen v bodě daném souřadnicemi:

\[
P_{nt} = (1 + \varepsilon)P_{nc}
\]
\[
P_{t} = \frac{P_{nt} B_3 - S_0}{B_1}
\]

c) \(P_{ns} > 0 \) a \(P_{nc} (1 + \varepsilon) > P_{ns} \) a \(\left| \frac{B_3}{B_1} \right| \geq \frac{1}{f} \) (obr. 23-5c): sklon přímky \(S = 0 \) je menší než sklon přímky limitního tření; přímka \(S = 0 \) je protnutá dříve než \(C = 0 \). Geometrickou úvahou dostaneme vztahy

\[
P_{nt} = (1 + \varepsilon) \frac{2P_{nt} fB_3 + C_0 \text{ sgn } S_0}{fB_3 - B_2 \text{ sgn } S_0}
\]

Obr. 5: Možné polohy přímek \(S = 0 \), \(C = 0 \) a počátečního klouzání. Tučná čára značí dráhu bodu \(Q \), čárková pak obrácené limitní tření.
\[P_t = f \left(P_{n_r} - 2P_{n_s} \right) \text{sgr} S_0 \] \hspace{1cm} (23.21)

d) \(P_{nS} > 0 \) a \(P_{nC} (1 + \varepsilon) > P_{nS} \) a \(\frac{B_3}{B_1} \geq \frac{1}{f} \) (viz. obr. 23-5d): jako předcházející případ, jen příručka \(C = 0 \) je proti dříve než \(S = 0 \). Zřejmě je

\[P_{n_r} = (1 + \varepsilon)P_{n_C} \] \hspace{1cm} (23.22)

\[P_{t_f} = f \left(P_{n_r} - 2P_{n_s} \right) \text{sgr} S_0 \] \hspace{1cm} (23.23)

Hodnoty po srážce pak určíme ze vztahů (23.1 - 23.3):

\[v_{r_1} = v_{r_0} + \frac{P_{t_f}}{m_1} \] \hspace{1cm} (23.24)

\[v_{r_2} = v_{r_0} + \frac{P_{n_f}}{m_2} \] \hspace{1cm} (23.25)

\[\omega_1 = \omega_{1_0} + \frac{b_1 P_{t_f} - a_2 P_{n_f}}{J_1} \] \hspace{1cm} (23.26)

b) **Aplikace obecných vztahů na srážku mince a podložky**

Uvažujme podložku jako těleso číslo 2; předpokládejme, že \(m_1 << m_2 \), \(J_1 << J_2 \), \(v_2 \to 0 \) a \(\omega_2 \to 0 \). Uvažujme, že mince je válec o poloměru \(R \), výšce \(h \) a hustotě \(\rho \). Potom

\[m_1 = \rho \pi R^2 h \] \hspace{1cm} (23.27)

\[J_1 = \frac{m_1 \left(3R^2 + h^2 \right)}{12} \] \hspace{1cm} (23.28)

\[B_1 = \frac{1}{m_1} + \frac{b_1^2}{J_1} \] \hspace{1cm} (23.29)

\[B_2 = \frac{1}{m_1} + \frac{a_2^2}{J_1} \] \hspace{1cm} (23.30)

\[B_3 = \frac{a_1 b_1}{J_1} \] \hspace{1cm} (23.31)

výrazy \(C_0 \) a \(S_0 \) jsou zřejmé z (23.12) a (23.11). Definujme úhel \(\phi \) otočení jako odchylku od svislého směru. Souřadnice těžiště \([a_1, b_1] \) a vzdálenost \(d \) nejnižšího bodu mince od podložky pak dostaneme geometrickými úvahami:

\[a_1 = R \cos \phi \text{ sgr} (\sin \phi) - \frac{\sin \phi \text{ sgr} (\cos \phi)}{2} \] \hspace{1cm} (23.32)

\[b_1 = \left| R \sin \phi \right| + \left| \frac{h \cos \phi}{2} \right| \] \hspace{1cm} (23.33)
\[d = y - R \sin \varphi + \frac{h \cos \varphi}{2} \]
(23.34)

5. Počítačová simulace, výsledky experimentů

Popis a simulace pádu mince

Pád mince je popsán soustavou pohybových diferenciálních rovnic
\[\dot{x} = 0 \]
(23.35)
\[\dot{y} = g \approx -9.81 \text{ m.s}^{-2} \]
(23.36)
\[\dot{\varphi} = 0 \]
(23.37)

dokud \(d > 0 \). Je-li \(d = 0 \), nastává srážka. (Při modelování tohoto problému většinou \(d \neq 0 \). Z tohoto důvodu je vhodné provádět výpočet dokud \(d \) nepřekročí nulovou hodnotu a potom k nalezení nulové, resp. co možná nejmenší hodnoty \(d \) užívá např. Newtonovu iterační metodu.) Je-li po této srážce energie mince (potenciální + kinetická) větší, než energie potřebná k otočení mince, výpočet pokračuje. V opačném případě určíme z \(\cos \varphi \), zda je nahoře hlava nebo orel.

Z experimentů i ze simulace je patrné, že mince se otáčí pouze při poměrně vysokých energiích (\(\gg mg \sqrt{R^2 + h^2} \)), potom už rázy mince připomínají spíš vibrace.

Výsledkem simulace je diagram dopadů mince (viz příklad na obrázku 23-6; jednotka výšky je volena v násobcích poloměru mince \(R \), abychom měli představu o výškách vzhledem k rozměru mince) v závislosti na počáteční výšce a počáteční úhlové rychlosti. (Samozřejmě je možné počítat závislost na dalších parametrech, jako je počáteční úhel, počáteční rychlost ve vodorovném směru, koeficient restituce a koeficient tření. Výpočet na obr. 23-6 trval zhruba 4 hodiny.)

![Obrázek 23-6: Příklad diagramu dopadů mince. Parametry: \(\varepsilon = 0.87 \), \(f = 0.12 \), počáteční úhel \(\varphi_0 = 0 \) a počáteční rychlost ve vodorovném směru \(x_0 = 0 \). Na horizontální ose je vynesena počáteční úhlová rychlost, na vertikální je výška, ze které mince padá. Černá barva označuje místa, kde mince dopadla hlavou dolů.](image)

Dosazením histogramu (obr. 23-3) do tohoto souboru výsledků získáme závislost pravděpodobnosti dopadu na výšce (obr. 23-7), ze které byla mince upuštěna. Z tohoto grafu
můžeme odečíst nejmenší výšku, kde je pravděpodobnost dopadu hlavou i
parametry změněné v úvodu je tato výška v rozmezí od 1,80R do 1,85R.

Obrázek 23-7: Závislost pravděpodobnosti dopadu hlavou nahoru na výšce. Spojitá křivka je
výsledkem teorie, znaky • vyjadřují výsledky experimentů.

6. Dosažené výsledky

Měřili jsme relativní četnost dopadu hlavou nahoru v závislosti na výšce — ta se
pohybovala v rozsahu od 1,5R do 8R (viz obr. 23-7). Chyba měření výšky mince by neměla
přesáhnout 0,3 mm.

Z výsledků experimentů můžeme odhadnout nejmenší výšky, kdy je pravděpodobnost
dopadu hlavou i orlem nahoru stejná, ta je mezi 1,79R a 1,91R.

7. Závěr

Teoretické výsledky tedy byly poměrně dobré potvrzeny experimenty, přičemž jsme
zanedbali vibrační charakter srážky a obtékání mince. Pro přesnější popis by bylo třeba vyřešit
vibrace mince a podložky [23-1] a pro větší výšky navíc započítat obtékání [23-2].

Literatura

(24) Název: Rampouchy
Č. úlohy: 17
Text: Prozkoumejte a vysvětlete tvorbu rampouchů.

1. Úvod

S jevem jako jsou rampouchy se můžeme často setkávat i v našich klimatických
podmínkách, které řídkými mrazy příliš neoplyvají. Krásné ledové tvary rampouchů visící pod
střechami domů nás jistě zaujaly již v našem raném dětství a styl se pro mnou z nás jakýmsi